26 research outputs found

    High-resolution characterization of the diffusion of light chemical elements in metallic components by scanning microwave microscopy

    Get PDF
    International audienceAn original sub-surface, high spatial resolution tomographic technique based on scanning microwave microscopy (SMM) is used to visualize in-depth materials with different chemical compositions. A significant phase difference in SMM between aluminum and chromium buried patterns has been observed. Moreover this technique was used to characterize a solid solution of a light chemical element (oxygen) in a metal lattice (zirconium). The large solubility of the oxygen in zirconium leads to modifications of the properties of the solid solution that can be measured by the phase shift signal in the SMM technique. The signal obtained in cross-section of an oxidized Zr sample shows the excellent agreement between phase shift profiles measured at different depths. Such a profile can reveal the length of diffusion of the oxygen in zirconium under the surface. The comparison with the oxygen concentration measured by nuclear reaction analysis shows excellent agreement in terms of length of diffusion and spatial distribution of the oxygen. A rapid calibration shows a linear dependence between the phase shift and the oxygen concentration. The SMM method opens up new possibilities for indirect measurements of the oxygen concentration dissolved in the metal lattic

    High temperature oxidation resistance and microstructure of laser-shock peened Ti-Beta-21S

    Get PDF
    Improving the high temperature (HT) resistance of titanium alloys is currently a technological challenge for extending their use in aerospace engines. Ti-Beta-21S is a metastable β titanium alloy specifically designed for high temperature applications up to 593 °C. We report the effect of a surface treatment by laser-shock peening (LSP) on the high temperature behavior of Ti-Beta-21S in order to increase further its maximum service temperature. The oxidation kinetics at 700 °C for duration up to 3000 h showed that the LSP treatment increases the oxidation resistance of Ti-Beta-21S. The effects of the LSP treatment on the alloy microstructure, its evolution at high temperature and the diffusion of light atmospheric elements (oxygen and nitrogen) are also reported

    Effect of laser shock peening on the high temperature oxidation resistance of titanium

    Get PDF
    The effect of laser shock peening on the high temperature oxidation resistance of commercial pure titanium at high temperature (700 °C) was studied in long-time (3000 h) exposure under dry air. A reduction of the gain mass by a factor 4 was found for laser-shock peened (LSP) samples compared to untreated titanium, which supports the interest of laser-shock treatment for the improvement of high temperature resistance. Short-durations (10 h and 100 h) oxidation experiments, devoted to investigate the influence of the LSP treatment on the first stages of the oxidation process, were also carried out by TGA. Several techniques as scanning electron microscopy, hardness and roughness measurements, X-ray diffraction and X-ray photoelectron spectrometry, micro-Raman spectroscopy, nuclear reaction analysis and electron backscattered diffraction were used to characterize the sample after laser treatment and oxidations. The formation of a continuous nitrogen-rich layer between the oxide layer and the α-case area in LSP samples appears to be the key factor to explain the reduction of oxygen diffusion, and thus the improvement of the oxidation resistance of laser shocked titanium. Moreover, the grain-texture of LSP samples after oxidation can also explain the improvement of the high temperature oxidation resistance after long times exposures

    Fatigue Strength Analysis of Petrol Engine Connecting-Rod with an Interference Fit Using FEM

    No full text

    Coupled Modelling of ZrO2/α-Zr(O) Layers Growth under Thermal and Mechanical Gradients

    No full text
    The oxidation process of a nuclear reactor fuel rod clad made of zirconium is simulated. It is assumed that the oxygen is transported by anionic diffusion in the zirconia layer (ZrO2). Part of this oxygen reacts at the interface between the zirconia layer and the metal, while the rest diffuses in the oxygen-enriched metal volume (a-Zr(O)) to the core of the metal by an interstitial mechanism. The model is based on the thermodynamics of irreversible processes and takes into account the influence of driving forces on the oxygen migration in the metal such as the oxygen concentration gradient, the temperature gradient [1] and the mechanical stress gradient [2]. The growth of both ZrO2 and a-Zr(O) layers are simulated using the finite element software CAST3M. This model has been applied on an axisymmetric geometry by imposing a heat flow on the fuel side and a constant temperature on the waterside of the clad. The differences obtained in the inner and outer sides of the nuclear clad concerning the oxidation kinetics and oxygen distribution are related to some coupling parameters. Several values of those parameters are used in the simulations to highlight their influence on the oxidation behavior. Thus, we show that negative values for the heat of transport, which relates the gradient of ocncentration and the gradient of temperature, give coherent results with experimental observations on oxidation kinetics for both sides of the clad

    Improve the dielectric properties of PrSrNi0.8Mn0.2O4 compounds by longer mechanical milling

    No full text
    Structural and dielectric properties of PrSrNi 0.8 Mn 0.2 O 4 ceramics elaborated by a rapid method combining mechanical milling and heat treatment were studied for the first time. The raw materials are milled at different times (t mil =0, 5, 10, 20 and 30 hours) and annealed at 1300°C for 8 hours to produce a revealed PrSrNi 0.8 Mn 0.2 O 4 single phase, exhibiting tetragonal structure with space group I4/mmm. This result was confirmed by using the TEM/ED pattern for sample milled at 30 h using the [001] orientation. The corresponding lattice images show a well-ordered compound, indicating the absence of stacking faults and the growth of the crystallites. Giant dielectric response was observed in these ceramics, and only one dielectric relaxation was found on the curve of a dielectric constant as a function of the temperature. The dielectric loss drops with increasing milling time. For 30 h milling it is divided by 100 at room temperature for low frequencies compared with 5 h milling. An equivalent circuit [R-C][R-CPE] was used to fit the experimental data and provide the activation energy of the thermally activated relaxation. Using the same nominal composition, the milling time has a major effect on the dielectric constant by significantly reducing the losses

    Dielectric relaxation and polaronic hopping in Mn-substituted LaSrNiO4 nickelates prepared by mechanical milling method

    No full text
    The structures, microstructures and dielectric properties of LaSrNi1-xMnxO4 (x=0, 0.1, 0.2, 0.3 and 0.5) ceramics synthetized by mechanical milling followed by heat treatment were studied. One single tetragonal phase was revealed in all compounds. Structural parameters were obtained by Rietveld refinement. The substitution of Ni ions by Mn produces a variation of the lattice parameters but no phase change is observed. The surface morphology and elemental analysis of these samples were respectively investigated by Scanning Electron Microscopy (SEM) and energy dispersive X-ray technique (EDS). Giant dielectric response was observed in these ceramics, and at least two relaxations were found on the curve of the temperature dependence of dielectric constant. An equivalent circuit [R-C][R-CPE] was used to fit the experimental data and provide the activation energy of the thermally activated relaxation. The activation energy values confirm the thermally activated small polaronic hopping contribution to the giant dielectric response

    High Temperature Oxidation Kinetics of Shot-Peened and Laser-Shock Peened Ti-Beta-21S

    No full text
    Isothermal oxidation tests of mechanically treated Ti-Beta-21S (TIMET, Ti-15Mo-3Nb-3Al-2Si, ASTM Grade 21) were performed under dry air at 650, 700 and 750 °C for 100 h and compared to untreated samples. Two different mechanical surface treatments were used: ultrasonic shot-peening (SP) and laser-shock peening (LSP). The study investigates the effect of both treatments on the oxidation kinetics of the process and the role of atmospheric nitrogen insertion. With this aim, oxidation experiments were also performed under pure oxygen. The results show that the oxidation is governed by diffusion after a short transient time. Both SP and LSP treatments improve the high temperature oxidation resistance of Ti-Beta-21S in dry air, but not in pure oxygen. The formation of a nitrogen-enriched layer at the oxidemetal interface, which is promoted by the mechanical surface treatments, explains the increase in the oxidation resistance in air by slowing down the diffusion of oxygen into the metal
    corecore