117 research outputs found

    M1a prostate cancer:Results of a Dutch multidisciplinary consensus meeting

    Get PDF
    ObjectivesTo determine the consensus of a Dutch multidisciplinary expert panel on the diagnostic evaluation and treatment of de novo and recurrent metastatic prostate cancer (PCa) limited to non-regional lymph nodes (M1a) in daily clinical practice.Materials and methodsThe panel consisted of 37 Dutch specialists from disciplines involved in the management of M1a PCa (urology, medical and radiation oncology, radiology, and nuclear medicine). We used a modified Delphi method consisting of two voting rounds and a consensus meeting (video conference). Consensus (good agreement) was defined as the situation in which ≥ 75% of the panelists chose the same option.ResultsConsensus existed for 57% of the items. The panel agreed that prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA-PET/CT) is the most appropriate standard imaging modality to identify de novo (100%) and recurrent (97%) M1a PCa. Androgen deprivation therapy (ADT) combined with radiotherapy to the prostate ± the M1a lesion(s) was most frequently considered an option for de novo M1a PCa. For M1a as recurrent disease, ADT alone, deferring treatment, or local radiotherapy to the M1a lesion(s) were judged to be the most important treatment options. However, no specific indications for treatment choice in relation to disease characteristics could be formulated.ConclusionsThe Dutch consensus panel preferred PSMA-PET/CT as the standard diagnostic modality to detect M1a PCa. Although potential treatment options were identified, explicit recommendations could not be formulated. This might (partly) be explained by the absence of high-level clinical evidence in this subset of patients. Further research is, therefore, strongly encouraged

    Oligometastatic Prostate Cancer:Results of a Dutch Multidisciplinary Consensus Meeting

    Get PDF
    Background: Oligometastatic prostate cancer (OMPC) is a heterogeneous disease state that is imperfectly understood, and its clinical implications are unclear. Objective: To determine the consensus of a Dutch multidisciplinary expert panel on biological aspects, treatment goals, and management of OMPC in daily clinical practice. Design, setting, and participants: The study comprised a modified Delphi method including an explorative survey with various statements and questions, followed by a consensus meeting to discuss and determine the agreement with revised statements and related items. The panel consisted of 34 Dutch representatives from urology, medical and radiation oncology, radiology, nuclear medicine, and basic research. Outcome measurements and statistical analysis: Agreement was determined with statements (five-point scale). Consensus was defined as ≥75% panel agreement with a statement. Results and limitations: Consensus existed for 56% of statements. The panel agreed that OMPC comprises a limited metastatic spread in the hormone-sensitive setting, in both the synchronous and the metachronous presentation. Limited metastatic spread was believed to involve three to five metastases and a maximum of two organs. Prostate-specific membrane antigen positron emission tomography/computed tomography scan was currently perceived as the most accurate diagnostic imaging modality. Although there was a consensus that targeted treatment of all metastases in OMPC will delay further dissemination of the disease, opinions on specific treatment regimens were divided. Panel outcomes were limited by the lack of scientific evidence on OMPC. Conclusions: A multidisciplinary panel reached a consensus that OMPC is a specific disease state requiring a tailored treatment approach. OMPC registries and clinical studies should focus on both the biology and the clinical parameters in relation to optimal treatment strategies in synchronous and metachronous OMPC. Patient summary: A group of Dutch medical specialists agreed that prostate cancer patients having few metastases may benefit from a new therapeutic approach. Clinical studies need to determine which treatment is best for each specific situation. A multidisciplinary panel reached consensus that oligometastatic prostate cancer (OMPC) is a specific disease state requiring a tailored treatment approach. OMPC registries and clinical studies should provide insight into the biology and clinical parameters in relation to optimal treatment strategies in synchronous and metachronous OMPC

    Quantitative implications of the updated EARL 2019 PET-CT performance standards

    Get PDF
    Purpose Recently, updated EARL specifications (EARL2) have been developed and announced. This study aims at investigating the impact of the EARL2 specifications on the quantitative reads of clinical PET-CT studies and testing a method to enable the use of the EARL2 standards whilst still generating quantitative reads compliant with current EARL standards (EARL1). Methods Thirteen non-small cell lung cancer (NSCLC) and seventeen lymphoma PET-CT studies were used to derive four image datasets-the first dataset complying with EARL1 specifications and the second reconstructed using parameters as described in EARL2. For the third (EARL2F6) and fourth (EARL2F7) dataset in EARL2, respectively, 6 mm and 7 mm Gaussian post-filtering was applied. We compared the results of quantitative metrics (MATV, SUVmax, SUVpeak, SUVmean, TLG, and tumor-to-liver and tumor-to-blood pool ratios) obtained with these 4 datasets in 55 suspected malignant lesions using three commonly used segmentation/volume of interest (VOI) methods (MAX41, A50P, SUV4). Results We found that with EARL2 MAX41 VOI method, MATV decreases by 22%, TLG remains unchanged and SUV values increase by 23-30% depending on the specific metric used. The EARL2F7 dataset produced quantitative metrics best aligning with EARL1, with no significant differences between most of the datasets (p>0.05). Different VOI methods performed similarly with regard to SUV metrics but differences in MATV as well as TLG were observed. No significant difference between NSCLC and lymphoma cancer types was observed. Conclusions Application of EARL2 standards can result in higher SUVs, reduced MATV and slightly changed TLG values relative to EARL1. Applying a Gaussian filter to PET images reconstructed using EARL2 parameters successfully yielded EARL1 compliant data

    Quantitative implications of the updated EARL 2019 PET-CT performance standards

    Get PDF
    Purpose Recently, updated EARL specifications (EARL2) have been developed and announced. This study aims at investigating the impact of the EARL2 specifications on the quantitative reads of clinical PET-CT studies and testing a method to enable the use of the EARL2 standards whilst still generating quantitative reads compliant with current EARL standards (EARL1). Methods Thirteen non-small cell lung cancer (NSCLC) and seventeen lymphoma PET-CT studies were used to derive four image datasets-the first dataset complying with EARL1 specifications and the second reconstructed using parameters as described in EARL2. For the third (EARL2F6) and fourth (EARL2F7) dataset in EARL2, respectively, 6 mm and 7 mm Gaussian post-filtering was applied. We compared the results of quantitative metrics (MATV, SUVmax, SUVpeak, SUVmean, TLG, and tumor-to-liver and tumor-to-blood pool ratios) obtained with these 4 datasets in 55 suspected malignant lesions using three commonly used segmentation/volume of interest (VOI) methods (MAX41, A50P, SUV4). Results We found that with EARL2 MAX41 VOI method, MATV decreases by 22%, TLG remains unchanged and SUV values increase by 23-30% depending on the specific metric used. The EARL2F7 dataset produced quantitative metrics best aligning with EARL1, with no significant differences between most of the datasets (p>0.05). Different VOI methods performed similarly with regard to SUV metrics but differences in MATV as well as TLG were observed. No significant difference between NSCLC and lymphoma cancer types was observed. Conclusions Application of EARL2 standards can result in higher SUVs, reduced MATV and slightly changed TLG values relative to EARL1. Applying a Gaussian filter to PET images reconstructed using EARL2 parameters successfully yielded EARL1 compliant data

    Machine learning-based analysis of [<sup>18</sup>F]DCFPyL PET radiomics for risk stratification in primary prostate cancer

    Get PDF
    PURPOSE: Quantitative prostate-specific membrane antigen (PSMA) PET analysis may provide for non-invasive and objective risk stratification of primary prostate cancer (PCa) patients. We determined the ability of machine learning-based analysis of quantitative [18F]DCFPyL PET metrics to predict metastatic disease or high-risk pathological tumor features. METHODS: In a prospective cohort study, 76 patients with intermediate- to high-risk PCa scheduled for robot-assisted radical prostatectomy with extended pelvic lymph node dissection underwent pre-operative [18F]DCFPyL PET-CT. Primary tumors were delineated using 50-70% peak isocontour thresholds on images with and without partial-volume correction (PVC). Four hundred and eighty standardized radiomic features were extracted per tumor. Random forest models were trained to predict lymph node involvement (LNI), presence of any metastasis, Gleason score ≥ 8, and presence of extracapsular extension (ECE). For comparison, models were also trained using standard PET features (SUVs, volume, total PSMA uptake). Model performance was validated using 50 times repeated 5-fold cross-validation yielding the mean receiver-operator characteristic curve AUC. RESULTS: The radiomics-based machine learning models predicted LNI (AUC 0.86 ± 0.15, p < 0.01), nodal or distant metastasis (AUC 0.86 ± 0.14, p < 0.01), Gleason score (0.81 ± 0.16, p < 0.01), and ECE (0.76 ± 0.12, p < 0.01). The highest AUCs reached using standard PET metrics were lower than those of radiomics-based models. For LNI and metastasis prediction, PVC and a higher delineation threshold improved model stability. Machine learning pre-processing methods had a minor impact on model performance. CONCLUSION: Machine learning-based analysis of quantitative [18F]DCFPyL PET metrics can predict LNI and high-risk pathological tumor features in primary PCa patients. These findings indicate that PSMA expression detected on PET is related to both primary tumor histopathology and metastatic tendency. Multicenter external validation is needed to determine the benefits of using radiomics versus standard PET metrics in clinical practice

    [18F]FDG and [18F]FES PET/CT Imaging as a Biomarker for Therapy Effect in Patients with Metastatic ER+ Breast Cancer Undergoing Treatment with Rintodestrant

    Get PDF
    PURPOSE: Positron emission tomography (PET) with 16α-[18F]-fluoro-17β-estradiol ([18F]FES) allows assessment of whole body estrogen receptor (ER) expression. The aim of this study was to investigate [18F]fluorodeoxyglucose ([18F]FDG) and [18F]FES PET/CT imaging for response prediction and monitoring of drug activity in patients with metastatic ER+ breast cancer undergoing treatment with the selective estrogen receptor downregulator (SERD) rintodestrant.PATIENTS AND METHODS: In this trial (NCT03455270), PET/CT imaging was performed at baseline ([18F]FDG and [18F]FES), during treatment and at time of progression (only [18F]FES). Visual, quantitative and mutational analysis was performed to derive a heterogeneity score (HS) and assess tracer uptake in lesions, in relation to the mutation profile. The primary outcome was progression-free survival (PFS).RESULTS: The HS and PFS in the entire group did not correlate (n=16, Spearman's rho, P=0.06), but patients with a low HS (&lt;25.0%, n=4) had a PFS of &gt;5 months whereas patients with no [18F]FES uptake (HS 100.0%, n =3) had a PFS of &lt;2 months. [18F]FES uptake was not affected by ESR1 mutations. On-treatment [18F]FES PET/CT scans showed no [18F]FES uptake in any of the baseline [18F]FES positive lesions. At progression, [18F]FES uptake remained blocked in patients scanned ≤1-2 half-lives of rintodestrant whereas it restored in patients scanned ≥5 days after end of treatment.CONCLUSION: Absence of ER expression on [18F]FES PET is a predictor for no response to rintodestrant. [18F]FES uptake during treatment and at time of progression is useful to monitor the (reversible) effect of therapy and continued mode of action of SERDs.</p

    EAU-EANM Consensus Statements on the Role of Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography in Patients with Prostate Cancer and with Respect to [177Lu]Lu-PSMA Radioligand Therapy

    Get PDF
    Funding support and role of sponsor: The EAU/EANM PSMA-based imaging and therapy consensus meeting was supported by an unrestricted educational grant from Novartis; Novartis had no influence over the content of the meeting or the publication. Medical writing support was funded by the European Association of Urology Research Foundation. Acknowledgements: The authors acknowledge Emily Spieker (Management Assistant, European Association of Urology) for project management. Medical writing support was provided by Angela Corstorphine of Kstorfin Medical Communications (KMC) limited.Peer reviewedPublisher PD

    Lutetium-177-PSMA-I&amp;T as metastases directed therapy in oligometastatic hormone sensitive prostate cancer, a randomized controlled trial

    Get PDF
    Background: In recent years, there is increasing evidence showing a beneficial outcome (e.g. progression free survival; PFS) after metastases-directed therapy (MDT) with external beam radiotherapy (EBRT) or targeted surgery for oligometastatic hormone sensitive prostate cancer (oHSPC). However, many patients do not qualify for these treatments due to prior interventions or tumor location. Such oligometastatic patients could benefit from radioligand therapy (RLT) with 177Lu-PSMA; a novel tumor targeting therapy for end-stage metastatic castration-resistant prostate cancer (mCRPC). Especially because RLT could be more effective in low volume disease, such as the oligometastatic status, due to high uptake of radioligands in smaller lesions. To test the hypothesis that 177Lu-PSMA is an effective treatment in oHSPC to prolong PFS and postpone the need for androgen deprivation therapy (ADT), we initiated a multicenter randomized clinical trial. This is globally, the first prospective study using 177Lu-PSMA-I&T in a randomized multicenter setting. Methods & design: This study compares 177Lu-PSMA-I&T MDT to the current standard of care (SOC); deferred ADT. Fifty-eight patients with oHSPC (≤5 metastases on PSMA PET) and high PSMA uptake (SUVmax > 15, partial volume corrected) on 18F-PSMA PET after prior surgery and/or EBRT and a PSA doubling time of < 6 months, will be randomized in a 1:1 ratio. The patients randomized to the interventional arm will be eligible for two cycles of 7.4GBq 177Lu-PSMA-I&T at a 6-week interval. After both cycles, patients are monitored every 3 weeks (including adverse events, QoL- and xerostomia questionnaires and laboratory testing) at the outpatient clinic. Twenty-four weeks after cycle two an end of study evaluation is planned together with another 18F-PSMA PET and (whole body) MRI. Patients in the SOC arm are eligible to receive 177Lu-PSMA-I&T after meeting the primary study objective, which is the fraction of patients who show disease progression during the study follow up. A second primary objective is the time to disease progression. Disease progression is defined as a 100% increase in PSA from baseline or clinical progression. Discussion: This is the first prospective randomized clinical study assessing the therapeutic efficacy and toxicity of 177Lu-PSMA-I&T for patients with oHSPC. Trial registration: Clinicaltrials.gov identifier: NCT04443062

    Use of modern imaging methods to facilitate trials of metastasis-directed therapy for oligometastatic disease in prostate cancer: a consensus recommendation from the EORTC Imaging Group

    Get PDF
    Oligometastatic disease represents a clinical and anatomical manifestation between localised and polymetastatic disease. In prostate cancer, as with other cancers, recognition of oligometastatic disease enables focal, metastasisdirected therapies. These therapies potentially shorten or postpone the use of systemic treatment and can delay further metastatic progression, thus increasing overall survival. Metastasis-directed therapies require imaging methods that definitively recognise oligometastatic disease to validate their efficacy and reliably monitor response, particularly so that morbidity associated with inappropriately treating disease subsequently recognised as polymetastatic can be avoided. In this Review, we assess imaging methods used to identify metastatic prostate cancer at first diagnosis, at biochemical recurrence, or at the castration-resistant stage. Standard imaging methods recommended by guidelines have insufficient diagnostic accuracy for reliably diagnosing oligometastatic disease. Modern imaging methods that use PET-CT with tumour-specific radiotracers (choline or prostate-specific membrane antigen ligand), and increasingly whole-body MRI with diffusion-weighted imaging, allow earlier and more precise identification of metastases. The European Organisation for Research and Treatment of Cancer (EORTC) Imaging Group suggests clinical algorithms to integrate modern imaging methods into the care pathway at the various stages of prostate cancer to identify oligometastatic disease. The EORTC proposes clinical trials that use modern imaging methods to evaluate the benefits of metastasis-directed therapies

    Update to a randomized controlled trial of lutetium-177-PSMA in Oligo-metastatic hormone-sensitive prostate cancer:the BULLSEYE trial

    Get PDF
    Background: The BULLSEYE trial is a multicenter, open-label, randomized controlled trial to test the hypothesis if 177Lu-PSMA is an effective treatment in oligometastatic hormone-sensitive prostate cancer (oHSPC) to prolong the progression-free survival (PFS) and postpone the need for androgen deprivation therapy (ADT). The original study protocol was published in 2020. Here, we report amendments that have been made to the study protocol since the commencement of the trial. Changes in methods and materials: Two important changes were made to the original protocol: (1) the study will now use 177Lu-PSMA-617 instead of 177Lu-PSMA-I&T and (2) responding patients with residual disease on 18F-PSMA PET after the first two cycles are eligible to receive additional two cycles of 7.4 GBq 177Lu-PSMA in weeks 12 and 18, summing up to a maximum of 4 cycles if indicated. Therefore, patients receiving 177Lu-PSMA-617 will also receive an interim 18F-PSMA PET scan in week 4 after cycle 2. The title of this study was modified to; “Lutetium-177-PSMA in Oligo-metastatic Hormone Sensitive Prostate Cancer” and is now partly supported by Advanced Accelerator Applications, a Novartis Company. Conclusions: We present an update of the original study protocol prior to the completion of the study. Treatment arm patients that were included and received 177Lu-PSMA-I&T under the previous protocol will be replaced. Trial registration: ClinicalTrials.gov NCT04443062. First posted: June 23, 2020
    corecore