293 research outputs found

    Two tone response of radiofrequency signals using the voltage output of a Superconducting Quantum Interference Filter

    Full text link
    In the presence of weak time harmonic electromagnetic fields, Superconducting Quantum Interference Filters (SQIFs) show the typical behavior of non linear mixers. The SQIFs are manufactured from high-T_c grain boundary Josephson junctions and operated in active microcooler. The dependence of dc voltage output V_dc vs. static external magnetic field B is non-periodic and consists of a well pronounced unique dip at zero field, with marginal side modulations at higher fields. We have successfully exploited the parabolic shape of the voltage dip around B=0 to mix quadratically two external time harmonic rf-signals, at frequencies f_1 and f_2 below the Josephson frequency f_J, and detect the corresponding mixing signal at f_1-f_2. When the mixing takes place on the SQIF current-voltage characteristics the component at 2f_2 - f_1 is present. The experiments suggest potential applications of a SQIF as a non-linear mixing device, capable to operate at frequencies from dc to few GHz with a large dynamic range.Comment: 10 pages, 3 Figures, submitted to J. Supercond. (as proceeding of the HTSHFF Symposium, June 2006, Cardiff

    Higher harmonics and ac transport from time dependent density functional theory

    Full text link
    We report on dynamical quantum transport simulations for realistic molecular devices based on an approximate formulation of time-dependent Density Functional Theory with open boundary conditions. The method allows for the computation of various properties of junctions that are driven by alternating bias voltages. Besides the ac conductance for hexene connected to gold leads via thiol anchoring groups, we also investigate higher harmonics in the current for a benzenedithiol device. Comparison to a classical quasi-static model reveals that quantum effects may become important already for small ac bias and that the full dynamical simulations exhibit a much lower number of higher harmonics. Current rectification is also briefly discussed.Comment: submitted to J. Comp. Elec. (special issue

    Subliminal galvanic-vestibular stimulation influences ego- and object-centred components of visual neglect

    Get PDF
    Neglect patients show contralesional deficits in egocentric and object-centred visuospatial tasks. The extent to which these different phenomena are modulated by sensory stimulation remains to be clarified. Subliminal galvanic vestibular stimulation (GVS) induces imperceptible, polarity-specific changes in the cortical vestibular systems without the unpleasant side effects (nystagmus, vertigo) induced by caloric vestibular stimulation. While previous studies showed vestibular stimulation effects on egocentric spatial neglect phenomena, such effects were rarely demonstrated in object-centred neglect. Here, we applied bipolar subsensory GVS over the mastoids (mean intensity: 0.7. mA) to investigate its influence on egocentric (digit cancellation, text copying), object-centred (copy of symmetrical figures), or both (line bisection) components of visual neglect in 24 patients with unilateral right hemisphere stroke. Patients were assigned to two patient groups (impaired vs. normal in the respective task) on the basis of cut-off scores derived from the literature or from normal controls. Both groups performed all tasks under three experimental conditions carried out on three separate days: (a) sham/baseline GVS where no electric current was applied, (b) left cathodal/right anodal (CL/AR) GVS and (c) left anodal/right cathodal (AL/CR) GVS, for a period of 20. min per session. CL/AR GVS significantly improved line bisection and text copying whereas AL/CR GVS significantly ameliorated figure copying and digit cancellation. These GVS effects were selectively observed in the impaired- but not in the unimpaired patient group. In conclusion, subliminal GVS modulates ego- and object-centred components of visual neglect rapidly. Implications for neurorehabilitation are discussed

    Disorder Effects in Superconducting Multiple Loop Quantum Interferometers

    Full text link
    A theoretical study is presented on a number N of resistively shunted Josephson junctions connected in parallel as a disordered 1D array by superconducting wiring in such a manner that there are N-1 individual SQUID loops with arbitrary shape formed.Comment: 4 pages, 2 figure

    Integrating Whole Cell Biotransformation of Aroma Compounds into a Novel Biorefinery Concept

    Get PDF
    The synthesis of aroma compounds that are utilized as precursors of multiple synthesis chains in the pharmaceutical industries and as ingredients in food and fragrance industries can be carried out using chemical processes, enzyme biocatalysis and whole cell biotransformation. Whole cell biotransformation has the potential of being more environmentally benign than chemical synthesis and more cost-effective as compared to enzyme catalysis. In a recently published study by the authors, the aroma compound Ethyl(3)hydroxybutyrate was produced by whole cell biotransformation under aerobic and anaerobic conditions. The yield of the anaerobic processes was similar to that of the aerobic processes, but additionally generated CO2 and ethanol as useful by-products. In this chapter we illustrate how the production process of Ethyl(3)hydroxybutyrate by whole cell biotransformation can be integrated into a novel biorefinery concept, based on the finding that the production of Ethyl(3)hydroxybutyrate under anaerobic conditions is efficient and environmentally friendly. CO2 may be converted to bio-methane together with H2 produced from excess regenerative power. A life cycle assessment confirmed that the anaerobic whole cell biotransformation process embedded into a biorefinery concept including bio-methane production has a lower environmental impact as compared to a concept based on the aerobic whole cell biotransformation

    DDB-EDM to FaBiO: The Case of the German Digital Library

    Get PDF
    Cultural heritage portals have the goal of providing users with seamless access to all their resources. This paper introduces initial efforts for a user-oriented restructuring of the German Digital Library (DDB). At present, cultural heritage objects (CHOs) in the DDB are modeled using an extended version of the Europeana Data Model (DDBEDM), which negatively impacts usability and exploration. These challenges can be addressed by exploiting ontologies, and building a knowledge graph from the DDB’s voluminous collection. Towards this goal, an alignment of bibliographic metadata from DDB-EDM to FRBR-Aligned Bibliographic Ontology (FaBiO) is presented

    Inhomogenity of the 172 nm VUV light irradiated aqueous solutions

    Get PDF
    Vacuum ultraviolet (VUV) photolysis is one of the Advanced Oxidation Processes (AOPs) for the elimination of trace pollutants from water and air. The ultraviolet (UV) radiation below 200 nm is named VUV, because it is strongly absorbed by air. Using VUV photolysis reactive species (H and OH) can be generated directly from water without addition of any chemicals. Consequently VUV radiation is used for producing ultrapure water and often investigated as a possible method for elimination of organic pollutants from water. In the case of VUV photolysis low pressure mercury vapor lamp (emits both 254 nm UV and 185 nm VUV photons) or Xe excimer lamp (emits both 172 nm VUV photons) can be applied as light source. In latter case the absorption coefficient of water at 172 nm is 550 cm–1 . Consequently, the penetration depth of VUV radiation is very small, only 0.04 mm. In this work we have investigated the effect of inhomogenity caused within this very thin VUV irradiated layer on the concentration of the primary formed reactive species, such as H and OH, using model calculation

    Nonperturbative Coherent Population Trapping: An Analytic Model

    Full text link
    Coherent population trapping is shown to occur in a driven symmetric double-well potential in the strong-field regime. The system parameters have been chosen to reproduce the 0−↔3+0^{-}\leftrightarrow 3^{+} transition of the inversion mode of the ammonia molecule. For a molecule initially prepared in its lower doublet we find that, under certain circumstances, the 3+3^{+} level remains unpopulated, and this occurs in spite of the fact that the laser field is resonant with the 0−↔3+0^{-}\leftrightarrow 3^{+} transition and intense enough so as to strongly mix the 0+0^{+} and 0−0^{-} ground states. This counterintuitive result constitutes a coherent population trapping phenomenon of nonperturbative origin which cannot be accounted for with the usual models. We propose an analytic nonperturbative model which accounts correctly for the observed phenomenon.Comment: 5 pages, 2 figure

    Novel Regime of Operation for Superconducting Quantum Interference Filters

    Get PDF
    A new operating regime of the Superconducting Quantum Interference Filter (SQIF) is investigated. The voltage to magnetic field response function, V(H), is determined by a Fraunhofer dependence of the critical current and magnetic flux focusing effect in Josephson junctions (F-mode). For SQIF-arrays made of high-Tc superconducting bicrystal Josephson junctions the F-mode plays a predominant role in the voltage-field response V(H). The relatively large superconducting loops of the SQIF are used for inductive coupling to the external input circuit. It is shown that the output noise of a SQIF-array measured with a cooled amplifier in the 1-2 GHz range is determined by the slope of the V(H) characteristic. Power gain and saturation power were evaluated using low frequency SQIF parameters. Finally, we consider the influence of the spread in the parameters of Josephson junctions in the SQIF-array on the V(H) characteristic of the whole structure.Comment: 7 pages, 4 figure
    • 

    corecore