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Abstract 

Vacuum ultraviolet (VUV) photolysis is one of the Advanced Oxidation Processes (AOPs) for 

the elimination of trace pollutants from water and air. The ultraviolet (UV) radiation below 

200 nm is named VUV, because it is strongly absorbed by air. Using VUV photolysis reactive 

species (H and OH) can be generated directly from water without addition of any 

chemicals. Consequently VUV radiation is used for producing ultrapure water and often 

investigated as a possible method for elimination of organic pollutants from water. In the case 

of VUV photolysis low pressure mercury vapor lamp (emits both 254 nm UV and 185 nm 

VUV photons) or Xe excimer lamp (emits both 172 nm VUV photons) can be applied as light 

source. In latter case the absorption coefficient of water at 172 nm is 550 cm
–1

. Consequently, 

the penetration depth of VUV radiation is very small, only 0.04 mm. In this work we have 

investigated the effect of inhomogenity caused within this very thin VUV irradiated layer on 

the concentration of the primary formed reactive species, such as H and OH, using model 

calculation. 

 

Introduction 

Advanced Oxidation Processes (AOPs) are based on hydroxyl radical (OH) initiated 

transformations. One of the possibilities of the OH generation is the irradiation of water with 

light having shorther wavelength than 190 nm. Generally low-pressure mercury vapor lamp is 

used as light source when VUV photolysis is applied to reduce the TOC content of purified 

water and produce ultrapure, high quality water. Another possible light source is the Xe 

excimer lamp which emits quasi-monochromatic light with maximum at 172 nm. There are 

several benefits of this excimer lamp, such as high average specific power radiation, high 

energy of emitting photons, quasi-monochromatic radiation, high spectral power density, 

absence of visible and IR radiation, low heating of radiating surface (cold lamps), no fixed 

geometry, no warm up time etc. The availability of multiple-wavelength UV radiation by 

simultaneous excitation of several kinds of working excimer molecules is also possible. 

Finally, excimer lamps based on noble gases are non-hazardous and are much more 

environmentally friendly than mercury vapor lamps. 1-4 

In VUV irradiated aqueous systems the first step is the excitation of water molecules. 

Absorption of the VUV radiation results in the homolysis or photochemical ionization of 

water molecules. The value of quantum yield of ionization (0.05) is much smaller than the 

quantum yield of homolysis (0.42): 

 

H2O + hν (<190 nm) → H• + HO•  

H2O + hν (<200 nm) → [e
−
,H2O

+
] + H2O → [e

−
,H2O

+
] + (H2O) → e

−
aq + HO• + H3O

+  
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Despite the many advantages of this technology and the promising results obtained through 

lab scale studies, there are still some factors that stymie the wide scale application of the VUV 

reactors for water treatment. Lack of proper model and simulation tool for predicting and 

analyzing the performance of VUV irradiated systems is among the key factors hindering 

their practical implementation. Model calculations generally do not take care about the effect 

of inhomogenity caused by the extremely short penetration depth of 172 nm VUV light. 

 

Results and discussion 

 

The first step of the present work was the collection of the kinetic data reported and used in 

the published papers related to the 172 nm irradiated solutions. The origin of these data were 

also checked and compared. The rate constants of the recombination of •H (resulting in H2) 

and •OH (resulting in H2O2) were originated from experimental data obtained of gamma 

irradiated system. Opposite 172 nm irradiated water, the intensity of gamma photons 

decreases only with 10% in a few cm thin water layer. Thus gamma irradiated solution can be 

defined as a „homogen system“, while the 172 nm irradiated one is an „inhomogen system“. 

 

1. Table. Rate constants of the recombination reactions of •H and •OH radicals  

Ref. 

kH+OH 

(M
-1

s
-1

) 

kH+H 

(M
-1

s
-1

) 

kOH+OH 

(M
-1

s
-1

) 

reaction partner method for 

radical 

generation 

 

[10] 1,0010
10

   Fe(II)/Ce(III), H2O2, H2SO4   

[11]  5,0010
9
  H2O2, Fe(II), kénsav Van Slyke  

[12]   8,2010
9
    

[4] 1,210
10 

* 6,0010
9
 6,0010

9 
* H2O2, H2O, H2SO4, Fe(III) Van De Graaff  

[13]  1,5010
10 

*  Fe(II) Van De Graaff  

[5] 7,0010
9 
**  5,2510

9
**    

[14]   6,3010
9
 Ferro-cianide Osram Xe-

excimer lamp 

 

[15]  1,2510
10

   Osram Xe-

excimer lamp 

 

[9] 1,0410
9
** 7,7510

9
** 8,7010

9
**    

* experimental data (relative method) 

** experimental data (absolute method) 

 

The basic of the model calculation using Octave [17] program were the followings: 

 

1. Generally about 40 various reactions take place in a VUV irradiated water. In this 

work we used a simplified reaction system containing only the following four main 

steps:  

 

     h + H2O
k1
→H •  +•OH     

H• +H• 
k2
→ H2 

H• +•ȮH 
k3
→  H2O 
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•OH+•OH
k4
→  H2O2 

 

2. The reaction rate constants were the average of the rate constants reported in Table 1 

(k(h) = 9×10
13

 M
-1

s
-1

, k(•H + •H) = 1×10
10

 M
-1

s
-1

, k(•H + •OH) = 1.5×10
10

 M
-1

s
-1

, 

k(•OH + •OH ) = 6×10
9
 M

-1
s

-1
). 

3. The actual concentration of photon was calculated via Lambert-Beer law, using the 

value of the absorption coefficient of water at 172 nm 550 cm
–1 
16. 

4. The diffusion constants of various species (D(•H)=810
-5 

cm
2
s

-1
, D(•OH)=210

-5
 m

2
s

-1
, 

D(H2)= 810
-5

 m
2
s

-1
, D(H2O2)=1,510

-5
 m

2
s

-1
) were also incorporated of the model. 

5. The total thin of the treated water layer was 0.2 cm, which was divided into 950 cells. 

In each cells, the intensity of the VUV light and concentration of primary radicals 

were supposed to be constant and homogenous. Near the lamp, the cells size were very 

small (40 nm). Farther from the wall of the light source cells size were bigger and the 

the biggest one were 200 nm. 

 

homogen system    inhomogen system 

 

Figure 1. The time dependence of the various radicals and their recombination products in 

homogen and inhomogen system. Data used for modeling: k(h)=910
13

 M
-1

s
-1

, 

k(Ḣ+Ḣ)=110
10

 M
-1

s
-1

, k(Ḣ+ȮH)=1,510
10

 M
-1

s
-1

, k(ȮH+ȮH)=610
9
 M

-1
s

-1
, 

D(Ḣ)=810
-5 

cm
2
s

-1
, D(ȮH)=210

-5
 m

2
s

-1
, D(H2)= 810

-5
 m

2
s

-1
, D(H2O2)=1,510

-5
 m

2
s

-1
, 

c0(h)= 110
-5 

M, c0(H2O)= 55,5 M. 

 

The results obtained in the case of homogen and inhomogen system are presented on Figure 1. 

The time dependence of the various radicals and their recombination products in the two 

system show, that inhomogenity has significant effect on the time scale. In homogen system 

the recombination of primary formed radicals take place within 10
-5

 sec. In the case of 

simulation obtained this time is decreased with 4 orders because of the reactions take place 

only in a very small part of the total volume of the reaction system. Within this photorection 

zone the radical concentration is much higher than in the homogen system. 
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2. Figure Concentration of primery radicals and their recombination products versus the 

distance from the light source, taking into consideration the inhomogenity. 

 

Using the model taking into consideration the inhomogenity of the VUV irradiated 

aqueous solution, the concentration of the primary radicals and their recombination products 

were calculated (Figure 2.). Radicals disappear from the system within the distance, which 

can be reached by photons. The concentration of recombination products (H2 and H2O2) 

decrease and increase with the time and finally reach a constant value. The effect of diffusion 

can be observed on the curves related to H2 and H2O2 concentration versus the distance from 

the wall of the lamp and their concentration is much lower than the radical concentration. 

 

Conclusion 

 Inhomogenity must be incorporated into the model calculation in the case of 172 nm 

irradiated aqueous solutions 
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