360 research outputs found

    Single shot cathode transverse momentum imaging in high brightness photoinjectors

    Get PDF
    In state of the art photoinjector electron sources, thermal emittance from photoemission dominates the final injector emittance. Therefore, low thermal emittance cathode developments and diagnostics are very important. Conventional thermal emittance measurements for the high gradient gun are time-consuming and thus thermal emittance is not measured as frequently as quantum efficiency during the lifetime of photocathodes, although both are important properties for the photoinjector optimizations. In this paper, a single shot measurement of photoemission transverse momentum, i.e., thermal emittance per rms laser spot size, is proposed for photocathode rf guns. By tuning the gun solenoid focusing, the electrons' transverse momenta at the cathode are imaged to a downstream screen, which enables a single shot measurement of both the rms value and the detailed spectra of the photoelectrons' transverse momenta. Both simulations and proof of principle experiments are reported

    Studies on charge production from Cs2Te photocathodes in the PITZ L-band normal conducting radio frequency photo injector

    Full text link
    This paper discusses the behavior of electron bunch charge produced in an L-band normal conducting radio frequency cavity (RF gun) from Cs2Te photocathodes illuminated with ps-long UV laser pulses when the laser transverse distribution consists of a flat-top core with Gaussian-like decaying halo. The produced charge shows a linear dependence at low laser pulse energies as expected in the quantum efficiency limited emission regime, while its dependence on laser pulse energy is observed to be much weaker for higher values, due to space charge limited emission. However, direct plug-in of experimental parameters into the space charge tracking code ASTRA yields lower output charge in the space charge limited regime compared to measured values. The rate of increase of the produced charge at high laser pulse energies close to the space charge limited emission regime seems to be proportional to the amount of halo present in the radial laser profile since the charge from the core has saturated already. By utilizing core + halo particle distributions based on measured radial laser profiles, ASTRA simulations and semi-analytical emission models reproduce the behavior of the measured charge for a wide range of RF gun and laser operational parameters within the measurement uncertainties.Comment: 15 pages, 16 figures, 2 table

    Can GPR4 be a potential therapeutic target for COVID-19?

    Get PDF
    This study was supported in part by the North Carolina COVID-19 Special State Appropriations. Research in the author's laboratory was also supported by a grant from the National Institutes of Health (R15DK109484, to LY).Coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first emerged in late 2019 and has since rapidly become a global pandemic. SARS-CoV-2 infection causes damages to the lung and other organs. The clinical manifestations of COVID-19 range widely from asymptomatic infection, mild respiratory illness to severe pneumonia with respiratory failure and death. Autopsy studies demonstrate that diffuse alveolar damage, inflammatory cell infiltration, edema, proteinaceous exudates, and vascular thromboembolism in the lung as well as extrapulmonary injuries in other organs represent key pathological findings. Herein, we hypothesize that GPR4 plays an integral role in COVID-19 pathophysiology and is a potential therapeutic target for the treatment of COVID-19. GPR4 is a pro-inflammatory G protein-coupled receptor (GPCR) highly expressed in vascular endothelial cells and serves as a “gatekeeper� to regulate endothelium-blood cell interaction and leukocyte infiltration. GPR4 also regulates vascular permeability and tissue edema under inflammatory conditions. Therefore, we hypothesize that GPR4 antagonism can potentially be exploited to mitigate the hyper-inflammatory response, vessel hyper-permeability, pulmonary edema, exudate formation, vascular thromboembolism and tissue injury associated with COVID-19.ECU Open Access Publishing Support Fun

    Empirical comparison of high gradient achievement for different metals in DC and pulsed mode

    Full text link
    For the SwissFEL project, an advanced high gradient low emittance gun is under development. Reliable operation with an electric field, preferably above 125 MV/m at a 4 mm gap, in the presence of an UV laser beam, has to be achieved in a diode configuration in order to minimize the emittance dilution due to space charge effects. In the first phase, a DC breakdown test stand was used to test different metals with different preparation methods at voltages up to 100 kV. In addition high gradient stability tests were also carried out over several days in order to prove reliable spark-free operation with a minimum dark current. In the second phase, electrodes with selected materials were installed in the 250 ns FWHM, 500 kV electron gun and tested for high gradient breakdown and for quantum efficiency using an ultra-violet laser.Comment: 25 pages, 13 figures, 5 tables. Follow up from FEL 2008 conference (Geyongju Korea 2008) New Title in JVST A (2010) : Vacuum breakdown limit and quantum efficiency obtained for various technical metals using DC and pulsed voltage source

    Emittance Reduction of RF Photoinjector Generated Electron Beams by Transverse Laser Beam Shaping

    Get PDF
    Laser pulse shaping is one of the key elements to generate low emittance electron beams with RF photoinjectors. Ultimately high performance can be achieved with ellipsoidal laser pulses, but 3-dimensional shaping is challenging. High beam quality can also be reached by simple transverse pulse shaping, which has demonstrated improved beam emittance compared to a transversely uniform laser in the 'pancake' photoemission regime. In this contribution we present the truncation of a Gaussian laser at a radius of approximately one sigma in the intermediate (electron bunch length directly after emission about the same as radius) photoemission regime with high acceleration gradients (up to 60 MV/m). This type of electron bunch is used e.g. at the European XFEL and FLASH free electron lasers at DESY, Hamburg site and is being investigated in detail at the Photoinjector Test facility at DESY in Zeuthen (PITZ). Here we present ray-tracing simulations and experimental data of a laser beamline upgrade enabling variable transverse truncation. Initial projected emittance measurements taken with help of this setup are shown, as well as supporting beam dynamics simulations. Additional simulations show the potential for substantial reduction of slice emittance at PITZ. © Published under licence by IOP Publishing Ltd

    Hereditary renal adysplasia, pulmonary hypoplasia and Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary renal adysplasia is an autosomal dominant trait with incomplete penetrance and variable expression that is usually associated with malformative combinations (including Müllerian anomalies) affecting different mesodermal organs such as the heart, lung, and urogenital system.</p> <p>Case report</p> <p>A case showing pulmonary hypoplasia, hip dysplasia, hereditary renal adysplasia, and Mayer-Rokitansky-Kuster-Hauser syndrome in adulthood is reported here. The i.v. pyelography showed right renal agenesis with a normal left kidney and ureter. Ultrasound and Magnetic Resonance Imaging also showed right renal agenesis with multicystic embryonary remnants in the right hemipelvis probably corresponding to a dysgenetic kidney. An uretrocystoscopy showed absence of ectopic ureter and of the right hemitrigone. She was scheduled for a diagnostic laparoscopy and creation of a neovagina according to the McIndoe technique with a prosthesis and skin graft. Laparoscopy confirmed the absence of the uterus. On both sides, an elongated, solid, rudimentary uterine horn could be observed. Both ovaries were also elongated, located high in both abdominal flanks and somewhat dysgenetics. A conventional cytogenetic study revealed a normal female karyotype 46, XX at a level of 550 GTG bands. A CGH analysis was performed using a 244K oligoarray CGH detecting 11 copy number variants described as normal variants in the databases. The 17q12 and 22q11.21 microdeletions described in other MRKH patients were not present in this case. Four years after operation her evolution is normal, without symptoms and the neovagina is adequately functional. The geneticists have studied her family history and the pedigree of the family is shown.</p> <p>Conclusions</p> <p>We suggest that primary damage to the mesoderm (paraaxil, intermediate, and lateral) caused by mutations in a yet unidentified gene is responsible for: 1) skeletal dysplasia, 2) inappropriate interactions between the bronchial mesoderm and endodermal lung bud as well as between the blastema metanephric and ureteric bud, and eventually 3) Müllerian anomalies (peritoneal mesothelium) at the same level. These anomalies would be transmitted as an autosomal dominant trait with incomplete penetrance and variable expressivity.</p

    Cardiovascular magnetic resonance in patients with pectus excavatum compared with normal controls

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To assess cardiothoracic structure and function in patients with pectus excavatum compared with control subjects using cardiovascular magnetic resonance imaging (CMR).</p> <p>Method</p> <p>Thirty patients with pectus excavatum deformity (23 men, 7 women, age range: 14-67 years) underwent CMR using 1.5-Tesla scanner (Siemens) and were compared to 25 healthy controls (18 men, 7 women, age range 18-50 years). The CMR protocol included cardiac cine images, pulmonary artery flow quantification, time resolved 3D contrast enhanced MR angiography (CEMRA) and high spatial resolution CEMRA. Chest wall indices including maximum transverse diameter, pectus index (PI), and chest-flatness were measured in all subjects. Left and right ventricular ejection fractions (LVEF, RVEF), ventricular long and short dimensions (LD, SD), mid-ventricle myocardial shortening, pulmonary-systemic circulation time, and pulmonary artery flow were quantified.</p> <p>Results</p> <p>In patients with pectus excavatum, the pectus index was 9.3 ± 5.0 versus 2.8 ± 0.4 in controls (P < 0.001). No significant differences between pectus excavatum patients and controls were found in LV ejection fraction, LV myocardial shortening, pulmonary-systemic circulation time or pulmonary flow indices. In pectus excavatum, resting RV ejection fraction was reduced (53.9 ± 9.6 versus 60.5 ± 9.5; P = 0.013), RVSD was reduced (P < 0.05) both at end diastole and systole, RVLD was increased at end diastole (P < 0.05) reflecting geometric distortion of the RV due to sternal compression.</p> <p>Conclusion</p> <p>Depression of the sternum in pectus excavatum patients distorts RV geometry. Resting RVEF was reduced by 6% of the control value, suggesting that these geometrical changes may influence myocardial performance. Resting LV function, pulmonary circulation times and pulmonary vascular anatomy and perfusion indices were no different to controls.</p

    KSHV gB associated RGD interactions promote attachment of cells by inhibiting the potential migratory signals induced by the disintegrin-like domain

    Get PDF
    Background: Kaposi's sarcoma-associated herpesvirus (KSHV) glycoprotein B (gB) is not only expressed on the envelope of mature virions but also on the surfaces of cells undergoing lytic replication. Among herpesviruses, KSHV gB is the only glycoprotein known to possess the RGD (Arg-Gly-Asp) binding integrin domain critical to mediating cell attachment. Recent studies described gB to also possess a disintegrin-like domain (DLD) said to interact with non-RGD binding integrins. We wanted to decipher the roles of two individually distinct integrin binding domains (RGD versus DLD) within KSHV gB in regulating attachment of cells over cell migration
    corecore