22 research outputs found

    Self-powered microfluidic chips for multiplexed protein assays from whole blood

    Get PDF
    We report herein on a self-powered, self-contained microfluidic-based chip designed to separate plasma from whole blood, and then execute an assay of a multiplexed panel of plasma biomarker proteins. The power source is based upon a chemical reaction that is catalytically triggered by the push of a button on the chip. We demonstrate assays of a dozen blood-based protein biomarkers using this automated, self-contained device. This platform can potentially permit high throughput, accurate, multiplexed blood diagnostic measurements in remote locations and by minimally trained individuals

    Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors

    Get PDF
    Electrolyte transport through an array of 20 nm wide, 20 μm long SiO_2 nanofluidic transistors is described. At sufficiently low ionic strength, the Debye screening length exceeds the channel width, and ion transport is limited by the negatively charged channel surfaces. At source−drain biases >5 V, the current exhibits a sharp, nonlinear increase, with a 20−50-fold conductance enhancement. This behavior is attributed to a breakdown of the zero-slip condition. Implications for energy conversion devices are discussed

    High-Density, Multiplexed Patterning of Cells at Single-Cell Resolution for Tissue Engineering and Other Applications

    Get PDF
    Surface chemistry meets tissue engineering: A novel surface-patterning approach for creating arrays of DNA squares is combined with a unique method for DNA-encoding of cells to construct dense arrays of distinct single cells. The cell patterns can be transferred from the substrate surface into thin hydrogel films, and these layers can be stacked to form 3D tissue constructs

    A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood

    Get PDF
    We describe an automated, self-powered chip based on lateral flow immunoassay for rapid, quantitative, and multiplex protein detection from pinpricks of whole blood. The device incorporates on-chip purification of blood plasma by employing inertial forces to focus blood cells away from the assay surface, where plasma proteins are captured and detected on antibody “barcode” arrays. Power is supplied from the capillary action of a piece of adsorbent paper, and sequentially drives, over a 40 minute period, the four steps required to capture serum proteins and then develop a multiplex immunoassay. An 11 protein panel is assayed from whole blood, with high sensitivity and high reproducibility. This inexpensive, self-contained, and easy to operate chip provides a useful platform for point-of-care diagnoses, particularly in resource-limited settings

    Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges

    Get PDF
    Nanomedicine, the integration of nanotechnological tools in medicine demonstrated promising potential to revolutionize the diagnosis and treatment of various human health conditions. Nanoparticles (NPs) have shown much promise in diagnostics of cancer, especially since they can accommodate targeting molecules on their surface, which search for specific tumor cell receptors upon injection into the blood stream. This concentrates the NPs in the desired tumor location. Furthermore, such receptor-specific targeting may be exploited for detection of potential metastases in an early stage. Some NPs, such as superparamagnetic iron oxide NPs (SPIONs), are also compatible with magnetic resonance imaging (MRI), which makes their clinical translation and application rather easy and accessible for tumor imaging purposes. Furthermore, multifunctional and/or theranostic NPs can be used for simultaneous imaging of cancer and drug delivery. In this review article, we will specifically focus on the application of SPIONs in early detection and imaging of major cancer types. From the Clinical Editor: Super-paramagnetic iron oxide nanoparticles (SPIONs) have been reported by many to be useful as an MRI contrast agent in the detection of tumors. To further enhance the tumor imaging, SPIONs can be coupled with tumor targeting motifs. In this article, the authors performed a comprehensive review on the current status of using targeted SPIONS in tumor detection and also the potential hurdles to overcome. © 2015 Elsevier Inc. All rights reserved

    Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood

    Get PDF
    As the tissue that contains the largest representation of the human proteome [1], blood is the most important fluid for clinical diagnostics [2, 3, 4]. However, although changes of plasma protein profiles reflect physiological or pathological conditions associated with many human diseases, only a handful of plasma proteins are routinely used in clinical tests. Reasons for this include the intrinsic complexity of the plasma proteome [1], the heterogeneity of human diseases and the rapid degradation of proteins in sampled blood [5]. We report an integrated microfluidic system, the integrated blood barcode chip that can sensitively sample a large panel of protein biomarkers over broad concentration ranges and within 10 min of sample collection. It enables on-chip blood separation and rapid measurement of a panel of plasma proteins from quantities of whole blood as small as those obtained by a finger prick. Our device holds potential for inexpensive, noninvasive and informative clinical diagnoses, particularly in point-of-care settings

    Highly Informative Analytical Platforms for Rapid, Non-Invasive Diagnosis and Stratification of Patients with Cancer

    Get PDF
    As the tissue that contains the largest representation of the human proteome, blood is the most important fluid for clinical diagnostics. However, although changes of plasma protein profiles reflect physiological or pathological conditions associated with many human diseases, only a handful of plasma proteins are routinely used in clinical tests. Reasons for this include the intrinsic complexity of the plasma proteome, the heterogeneity of human diseases and the rapid degradation of proteins in sampled blood. The first part of this thesis reports an integrated microfluidic system, the integrated blood barcode chip (IBBC) that can sensitively sample a large panel of protein biomarkers over broad concentration ranges and within 10 minutes of sample collection. It enables on-chip blood separation and rapid measurement of a panel of plasma proteins from quantities of whole blood as small as those obtained by a finger prick. The device holds potential for inexpensive, noninvasive and informative clinical diagnoses, particularly in point-of-care settings. Proteomic approaches, on which the IBBC platform is based, have shown great promise in recent years for correctly classifying and diagnosing cancer patients. However, no large antibody-based microarray studies have yet been conducted to evaluate and validate plasma molecular signatures for detection of glioblastoma and monitoring of its response to therapy. In the second part of this thesis, plasma samples from 46 glioblastoma patients (72 total samples) are compared with those of 47 healthy controls with respect to the plasma levels of 35 different proteins known to be generally associated with tumor growth, survival, invasion, migration, and immune regulation. Average-linkage hierarchical clustering of the patient data stratified the two groups effectively, permitting accurate assignment of test samples into either GBM or healthy control groups with a sensitivity and specificity as high as 90% and 94%, respectively (when test samples within unbiased clusters were removed). The accuracy of these assignments improved (sensitivity and specificity as high as 94% and 96%, respectively) when the cluster analysis was repeated on increasingly trimmed sets of proteins that exhibited the most statistically significant (p &#60; 0.05) differential expression. The diagnostic accuracy was also higher for test samples that fell into more homogeneous clusters. Intriguingly, test samples that fell within perfectly homogeneous clusters (all members belonging to the same group) could be diagnosed with 100% accuracy. Using the same 35-protein panel, we then analyzed plasma samples from GBM patients who were treated with the chemotherapeutic drug Avastin (Bevacizumab) in an effort to stratify patients based on treatment-responsiveness. Specifically, we compared 52 samples from (25) patients who exhibited tumor recurrence with 51 samples from (21) patients who did not exhibit recurrence. Again, several proteins were highly differentially expressed and cluster analysis provided effective stratification of patients between these two groups (sensitivity and specificity of 90% and 96%, respectively).</p

    Sol–Gel Synthesis and Electrospraying of Biodegradable (P2O5)55–(CaO)30–(Na2O)15 Glass Nanospheres as a Transient Contrast Agent for Ultrasound Stem Cell Imaging

    No full text
    Ultrasound imaging is a powerful tool in medicine because of the millisecond temporal resolution and submillimeter spatial resolution of acoustic imaging. However, the current generation of acoustic contrast agents is primarily limited to vascular targets due to their large size. Nanosize particles have the potential to be used as a contrast agent for ultrasound molecular imaging. Silica-based nanoparticles have shown promise here; however, their slow degradation rate may limit their applications as a contrast agent. Phosphate-based glasses are an attractive alternative with controllable degradation rate and easily metabolized degradation components in the body. In this study, biodegradable P2O5-CaO-Na2O phosphate-based glass nanospheres (PGNs) were synthesized and characterized as contrast agents for ultrasound imaging. The structure of the PGNs was characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), (31)P magic angle spinning nuclear magnetic resonance ((31)P MAS NMR), and Fourier transform infrared (FTIR) spectroscopy. The SEM images indicated a spherical shape with a diameter size range of 200-500 nm. The XRD, (31)P NMR, and FTIR results revealed the amorphous and glassy nature of PGNs that consisted of mainly Q(1) and Q(2) phosphate units. We used this contrast to label mesenchymal stem cells and determined in vitro and in vivo detection limits of 5 and 9 μg/mL, respectively. Cell counts down to 4000 could be measured with ultrasound imaging with no cytoxicity at doses needed for imaging. Importantly, ion-release studies confirmed these PGNs biodegrade into aqueous media with degradation products that can be easily metabolized in the body
    corecore