35 research outputs found

    Ehrlichia and Spotted Fever Group Rickettsiae Surveillance in Amblyomma americanum in Virginia Through Use of a Novel Six-Plex Real-Time PCR Assay

    Get PDF
    The population of the lone star tick Amblyomma americanum has expanded in North America over the last several decades. It is known to be an aggressive and nondiscriminatory biter and is by far the most common human-biting tick encountered in Virginia. Few studies of human pathogen prevalence in ticks have been conducted in our state since the mid-twentieth century. We developed a six-plex real-time PCR assay to detect three Ehrlichia species (E. chaffeensis, E. ewingii, and Panola Mountain Ehrlichia) and three spotted fever group Rickettsiae (SFGR; R. amblyommii, R. parkeri, and R. rickettsii) and used it to test A. americanum from around the state. Our studies revealed a presence of all three Ehrlichia species (0–24.5%) and a high prevalence (50–80%) of R. amblyommii, a presumptively nonpathogenic SFGR, in all regions surveyed. R. parkeri, previously only detected in Virginia’s Amblyomma maculatum ticks, was found in A. americanum in several surveyed areas within two regions having established A. maculatum populations. R. rickettsii was not found in any sample tested. Our study provides the first state-wide screening of A. americanum ticks in recent history and indicates that human exposure to R. amblyommii and to Ehrlichiae may be common. The high prevalence of R. amblyommii, serological cross-reactivity of all SFGR members, and the apparent rarity of R. rickettsii in human biting ticks across the eastern United States suggest that clinical cases of tick-borne disease, including ehrlichiosis, may be commonly misdiagnosed as Rocky Mountain spotted fever, and that suspicion of other SFGR as well as Ehrlichia should be increased. These data may be of relevance to other regions where A. americanum is prevalent

    The Acute Environment, Rather than T Cell Subset Pre-Commitment, Regulates Expression of the Human T Cell Cytokine Amphiregulin

    Get PDF
    Cytokine expression patterns of T cells can be regulated by pre-commitment to stable effector phenotypes, further modification of moderately stable phenotypes, and quantitative changes in cytokine production in response to acute signals. We showed previously that the epidermal growth factor family member Amphiregulin is expressed by T cell receptor-activated mouse CD4 T cells, particularly Th2 cells, and helps eliminate helminth infection. Here we report a detailed analysis of the regulation of Amphiregulin expression by human T cell subsets. Signaling through the T cell receptor induced Amphiregulin expression by most or all T cell subsets in human peripheral blood, including naive and memory CD4 and CD8 T cells, Th1 and Th2 in vitro T cell lines, and subsets of memory CD4 T cells expressing several different chemokine receptors and cytokines. In these different T cell types, Amphiregulin synthesis was inhibited by an antagonist of protein kinase A, a downstream component of the cAMP signaling pathway, and enhanced by ligands that increased cAMP or directly activated protein kinase A. Prostaglandin E2 and adenosine, natural ligands that stimulate adenylyl cyclase activity, also enhanced Amphiregulin synthesis while reducing synthesis of most other cytokines. Thus, in contrast to mouse T cells, Amphiregulin synthesis by human T cells is regulated more by acute signals than pre-commitment of T cells to a particular cytokine pattern. This may be appropriate for a cytokine more involved in repair than attack functions during most inflammatory responses

    Clofazimine pharmacokinetics in HIV‐infected adults with diarrhea: Implications of diarrheal disease on absorption of orally administered therapeutics

    Get PDF
    Oral drug absorption kinetics are usually established in populations with a properly functioning gastrointestinal tract. However, many diseases and therapeutics can alter gastrointestinal physiology and cause diarrhea. The extent of diarrhea‐associated impact on drug pharmacokinetics has not been quantitatively described. To address this knowledge gap, we used a population pharmacokinetic modeling approach with data collected in a phase IIa study of matched human immunodeficiency virus (HIV)–infected adults with/without cryptosporidiosis and diarrhea to examine diarrhea‐associated impact on oral clofazimine pharmacokinetics. A population pharmacokinetic model was developed with 428 plasma samples from 23 HIV‐infected adults with/without Cryptosporidium infection using nonlinear mixed‐effects modeling. Covariates describing cryptosporidiosis‐associated diarrhea severity (e.g., number of diarrhea episodes, diarrhea grade) or HIV infection (e.g., viral load, CD4+ T cell count) were evaluated. A two‐compartment model with lag time and first‐order absorption and elimination best fit the data. Maximum diarrhea grade over the study duration was found to be associated with a more than sixfold reduction in clofazimine bioavailability. Apparent clofazimine clearance, intercompartmental clearance, central volume of distribution, and peripheral volume of distribution were 3.71 L/h, 18.2 L/h (interindividual variability [IIV] 45.0%), 473 L (IIV 3.46%), and 3434 L, respectively. The absorption rate constant was 0.625 h−1 (IIV 149%) and absorption lag time was 1.83 h. In conclusion, the maximum diarrhea grade observed for the duration of oral clofazimine administration was associated with a significant reduction in clofazimine bioavailability. Our results highlight the importance of studying disease impacts on oral therapeutic pharmacokinetics to inform dose optimization and maximize the chance of treatment success

    Aetiology and incidence of diarrhoea requiring hospitalisation in children under 5 years of age in 28 low-income and middle-income countries: findings from the Global Pediatric Diarrhea Surveillance network.

    Get PDF
    Introduction: Diarrhoea remains a leading cause of child morbidity and mortality. Systematically collected and analysed data on the aetiology of hospitalised diarrhoea in low-income and middle-income countries are needed to prioritise interventions. Methods: We established the Global Pediatric Diarrhea Surveillance network, in which children under 5 years hospitalised with diarrhoea were enrolled at 33 sentinel surveillance hospitals in 28 low-income and middle-income countries. Randomly selected stool specimens were tested by quantitative PCR for 16 causes of diarrhoea. We estimated pathogen-specific attributable burdens of diarrhoeal hospitalisations and deaths. We incorporated country-level incidence to estimate the number of pathogen-specific deaths on a global scale. Results: During 2017–2018, 29 502 diarrhoea hospitalisations were enrolled, of which 5465 were randomly selected and tested. Rotavirus was the leading cause of diarrhoea requiring hospitalisation (attributable fraction (AF) 33.3%; 95% CI 27.7 to 40.3), followed by Shigella (9.7%; 95% CI 7.7 to 11.6), norovirus (6.5%; 95% CI 5.4 to 7.6) and adenovirus 40/41 (5.5%; 95% CI 4.4 to 6.7). Rotavirus was the leading cause of hospitalised diarrhoea in all regions except the Americas, where the leading aetiologies were Shigella (19.2%; 95% CI 11.4 to 28.1) and norovirus (22.2%; 95% CI 17.5 to 27.9) in Central and South America, respectively. The proportion of hospitalisations attributable to rotavirus was approximately 50% lower in sites that had introduced rotavirus vaccine (AF 20.8%; 95% CI 18.0 to 24.1) compared with sites that had not (42.1%; 95% CI 33.2 to 53.4). Globally, we estimated 208 009 annual rotavirus-attributable deaths (95% CI 169 561 to 259 216), 62 853 Shigella-attributable deaths (95% CI 48 656 to 78 805), 36 922 adenovirus 40/41-attributable deaths (95% CI 28 469 to 46 672) and 35 914 norovirus-attributable deaths (95% CI 27 258 to 46 516). Conclusions: Despite the substantial impact of rotavirus vaccine introduction, rotavirus remained the leading cause of paediatric diarrhoea hospitalisations. Improving the efficacy and coverage of rotavirus vaccination and prioritising interventions against Shigella, norovirus and adenovirus could further reduce diarrhoea morbidity and mortality

    Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study.

    Get PDF
    BACKGROUND: Diarrhoea is the second leading cause of mortality in children worldwide, but establishing the cause can be complicated by diverse diagnostic approaches and varying test characteristics. We used quantitative molecular diagnostic methods to reassess causes of diarrhoea in the Global Enteric Multicenter Study (GEMS). METHODS: GEMS was a study of moderate to severe diarrhoea in children younger than 5 years in Africa and Asia. We used quantitative real-time PCR (qPCR) to test for 32 enteropathogens in stool samples from cases and matched asymptomatic controls from GEMS, and compared pathogen-specific attributable incidences with those found with the original GEMS microbiological methods, including culture, EIA, and reverse-transcriptase PCR. We calculated revised pathogen-specific burdens of disease and assessed causes in individual children. FINDINGS: We analysed 5304 sample pairs. For most pathogens, incidence was greater with qPCR than with the original methods, particularly for adenovirus 40/41 (around five times), Shigella spp or enteroinvasive Escherichia coli (EIEC) and Campylobactor jejuni o C coli (around two times), and heat-stable enterotoxin-producing E coli ([ST-ETEC] around 1·5 times). The six most attributable pathogens became, in descending order, Shigella spp, rotavirus, adenovirus 40/41, ST-ETEC, Cryptosporidium spp, and Campylobacter spp. Pathogen-attributable diarrhoeal burden was 89·3% (95% CI 83·2-96·0) at the population level, compared with 51·5% (48·0-55·0) in the original GEMS analysis. The top six pathogens accounted for 77·8% (74·6-80·9) of all attributable diarrhoea. With use of model-derived quantitative cutoffs to assess individual diarrhoeal cases, 2254 (42·5%) of 5304 cases had one diarrhoea-associated pathogen detected and 2063 (38·9%) had two or more, with Shigella spp and rotavirus being the pathogens most strongly associated with diarrhoea in children with mixed infections. INTERPRETATION: A quantitative molecular diagnostic approach improved population-level and case-level characterisation of the causes of diarrhoea and indicated a high burden of disease associated with six pathogens, for which targeted treatment should be prioritised. FUNDING: Bill & Melinda Gates Foundation

    Highly Sensitive and Quantitative Detection of the H274Y Oseltamivir Resistance Mutation in Seasonal A/H1N1 Influenza Virus ▿

    No full text
    A C-to-T transition mutation in the neuraminidase gene from seasonal A/H1N1 causes a His-to-Tyr mutation at amino acid position 275 (H274Y, universal N2 numbering), conferring resistance against oseltamivir (Tamiflu). This mutation was first detected in clinical samples in Europe during the 2007-2008 influenza season. Viruses with this mutation reached a prevalence of ∼11% by the end of the season in North American isolates tested by the CDC. We developed a highly sensitive and specific quantitative real-time reverse transcriptase PCR assay to detect the H274Y mutation. This assay utilizes a 5′-methyl-isocytosine (isoC) residue and fluorescent reporters on genotype-specific primers. During PCR, a quencher coupled to isoguanine (isoG) is site-specifically incorporated complementary to the isoC/dye, resulting in loss of fluorescence. Optimization of primers and assay conditions produced a limit of detection of 100 gene copies per reaction for both wild-type and H274Y genotypes. In samples with mixed populations, it can reliably detect as little as a 1% wild-type or 0.1% H274Y component. This high sensitivity makes the assay usable on samples with viral loads too low for dideoxy or pyrosequencing analysis. Additionally, the assay distinguishes seasonal A/H1N1 from A/H3N2, influenza B, or 2009 pandemic A/H1N1, making it useful for influenza virus subtyping as well as for drug resistance detection. We probed seasonal A/H1N1 samples from the 2005-2006, 2006-2007, and 2007-2008 influenza seasons. Data from the new assay closely matched available drug resistance genotype data previously determined by dideoxy sequencing. The H274Y mutation was only found in samples from the 2007-2008 season

    Several human CD4 T cell subsets can produce AR.

    No full text
    <p>(A) Allogeneic Th1 and Th2 cell lines from three subjects were stimulated with PMA + ionomycin for 6 hours. The percentage of cells expressing IFNγ, IL-4, and AR was analyzed by ICS. (B) The expression of AR and other cytokines was measured in SEB-stimulated PBMC from four subjects by ICS, calculating the frequencies of single cytokine producers, and all possible combinations of double-producers, among the CD154+ CD4+ T cells. The figure shows the ratio between the <u>observed</u> frequencies of double-producing T cells for each cytokine pair, and the <u>expected</u> frequencies (calculated as the product of the individual frequencies for each cytokine). Values represent the ratios for the double-producer combination defined by the row and column labels. Ratios above or below 1 are indicated by solid or open symbols, respectively. (C) IL-4, IFNγ and IL-2 mRNA levels were measured by RT-PCR in the sorted populations described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039072#pone-0039072-g004" target="_blank">Figure 4C</a>. (D) PBMC were treated with influenza H1N1 peptides or tetanus (five subjects each), or the allergens Fel d1 (solid symbols) or Der p1 (open symbols)(three subjects each). The numbers of memory CD4 T cells expressing AR and other cytokines were measured by ICS. The backgrounds (no antigen) have been subtracted. Each symbol represents one individual and the filled bar is the mean of all tested subjects. (E) CD69+ CD4+ T cells (Control_CD69+) were sorted from PBMC incubated in medium alone. CD69+IFNγ+ and CD69+IFNγ- CD4 T cells were sorted from influenza peptide-treated PBMC using the cytokine secretion assay. The mRNA levels of IFNγ and AR were measured by RT-PCR. Results in (A-C) are representative of at least three experiments, (D) represents two experiments using a total of 5 independent subjects, and (E) represents two experiments.</p

    Both naïve and memory human CD4 T cells expressed AR during TCR activation.

    No full text
    <p>(A) PBMC were treated with medium alone or allogeneic EBV-transformed B cells for 10 hours and analyzed by ICS. The gating strategy to identify activated CD4+ and CD8+ T cells is shown. (B) AR, IL-2, IFNγ or IL-4 expression was measured in four subjects in CD45RA+ (open) and CD45RA- (solid) CD4+ and CD8+ T cells after allogeneic EBV-transformed B cell stimulation. Background values have been subtracted. (C) PBMC were treated with medium alone or SEB in the presence of TAPI-1 for 8 hours. Then six populations were sorted based on surface AR, CD69 and CD45RA expression (left). AR mRNA in each population was measured by RT-PCR (right). Results in (A) and (B) represent at least three experiments, (C) represents two experiments.</p

    AR is produced by T cell subsets expressing different chemokine receptors and surface markers.

    No full text
    <p>PBMC were treated with medium alone, anti-CD3+ anti-CD28 antibodies, or SEB in the presence of TAPI-1 for 8 hours. Cells were stained for AR and cell-surface markers and analyzed by flow cytometry. Representative of two experiments.</p

    TCR and cAMP synergize to induce AR production in human CD4 T cells.

    No full text
    <p>Purified CD4 T cells were incubated with or without TCR stimulation (anti-CD3/CD28 beads) and the cAMP agonist. (A) AR and HB-EGF mRNA expression was measured by RT-PCR. (B) The concentrations of AR in the supernatant and cell lysates were measured by ELISA. (C) Enriched CD45RA+CD45RO- (naïve) and CD45RA-CD45RO+ (memory) CD4 T cells were treated with medium alone, or anti-CD3/CD28 beads in the presence or absence of cAMP agonist (1 ∼ 1000 µM). The concentration of AR in the supernatant at 24 hours was measured by ELISA. (D) Purified CD4 T cells were treated with medium alone, or anti-CD3/CD28 beads in the presence or absence of the cAMP-modifying agents shown. RNA was extracted at 4 hours, and AR mRNA was measured by RT-PCR. The concentration of AR in the 24-hour supernatant was measured by ELISA. (E) PBMC were treated with anti-CD3+ anti-CD28 antibodies in the presence or absence of cAMP agonist or antagonist for 8 hours. CD4 T cells were purified by cell sorting and RNA was extracted. The mRNA levels of AR and other cytokines were measured by RT-PCR. All results are representative of at least three experiments.</p
    corecore