42 research outputs found
Recommended from our members
Geographic information retrieval in a mobile environment: evaluating the needs of mobile individuals
This paper describes research that aims to define the information needs of mobile individuals, to implement a mobile information system that can satisfy those needs, and finally to evaluate the performance of that system with end-users. First a review of the emerging discipline of geographic information retrieval (GIR) is presented as background to the more specific issue of mobile information retrieval. Following this, a user needs study is described evaluating the requirements of potential users of a mobile information system; the study finds that there is a strong geographic component to users' information needs. Next, four geographic post-query filters are described which attempt to represent the region of space associated with an individual's query made at some specific spatial location. These filters are spatial proximity (distance in space), temporal proximity (travel time), speed-heading prediction surfaces (likelihood of visiting locations) and visibility (locations that can be seen). Two of these filters — spatial proximity and speed-heading prediction surfaces — are implemented in a mobile information system and subsequently evaluated with users in an outdoor setting. The results of evaluation suggest that retrieved information to which post-query geographic filters have been applied is considered more relevant than unfiltered information, and that users find information sorted by spatial proximity to be more relevant than that sorted by a prediction surface of likely future locations. The paper closes with a discussion of the wider implications of these results for developers of mobile information systems and location-based services
GIS navigation boosted by column stores
Earth observation sciences, astronomy, and seismology have large data sets which have inherently rich spatial and geospatial information. In combination with large collections of semantically rich objects which have a large number of thematic properties, they form a new source of knowledge for urban planning, smart cities and natural resource management. Modeling and storing these properties indicating the relationships between them is best handled in a relational database. Furthermore, the scalability requirements posed by the latest 26-attribute light detection and ranging (LIDAR) data sets are a challenge for file-based solutions. In this demo we show how to query a 640 billion point data set using a column store enriched with GIS functionality. Through a lightweight and cache conscious secondary index called Imprints, spatial queries performance on a at table storage is comparable to traditional file-based solutions. All the results are visualised in real time using QGIS
