84 research outputs found

    Gene finding in genetically isolated populations

    Get PDF
    The struggle to identify susceptibility genes for complex disorders has stimulated geneticists to develop new approaches. One approach that has gained considerable interest is to focus on genetically isolated populations rather than on the general population. There remains much controversy and theoretical debate over the feasibility and advantages of such populations, but recent results speak in favor of the feasibility of this approach, and will be reviewed here

    New distal marker closely linked to the fragile X locus

    Get PDF
    We have isolated II-10, a new X-chromosomal probe that identifies a highly informative two-allele TaqI restriction fragment length polymorphism at locus DXS466. Using somatic cell hybrids containing distinct portions of the long arm of the X chromosome, we could localize DXS466 between DXS296 and DXS304, both of which are closely linked distal markers for fragile X. This regional localization was supported by the analysis, in fragile X families, of recombination events between these three loci, the fragile X locus and locus DXS52, the latter being located at a more distal position. DXS466 is closely linked to the fragile X locus with a peak lod score of 7.79 at a recombination fraction of 0.02. Heterozygosity of DXS466 is approximately 50%. Its close proximity and relatively high informativity make DXS466 a valuable new diagnostic DNA marker for fragile X

    N-acetyltransferase 2 polymorphism in Parkinson's disease. The Rotterdam study

    Get PDF
    The N-acetyltransferase-2 gene (NAT-2) has been associated with Parkinson's disease. The genotype associated with slow acetylation has been reported to be increased in patients with Parkinson's disease. Three mutant alleles M1, M2, and M3 of NAT-2 were investigated in 80 patients with idiopathic Parkinson's disease and 161 age matched randomly selected controls from a prospective population based cohort study. The allelic frequencies and genotypic distributions in patients were very similar to those found in controls. In controls the frequency of the wild type allele increased significantly with age suggesting that the mutant alleles are associated with an increased risk of mortality. These findings suggest that NAT-2 polymorphism is not a major genetic determinant of idiopathic Parkinson's disease, but may be a determinant of mortality in the general population

    Dopaminergic Neuronal Loss and Dopamine-Dependent Locomotor Defects in Fbxo7-Deficient Zebrafish

    Get PDF
    Recessive mutations in the F-box only protein 7 gene (FBXO7) cause PARK15, a Mendelian form of early-onset, levodopa-responsive parkinsonism with severe loss of nigrostriatal dopaminergic neurons. However, the function of the protein encoded by FBXO7, and the pathogenesis of PARK15 remain unknown. No animal models of this disease exist. Here, we report the generation of a vertebrate model of PARK15 in zebrafish. We first show that the zebrafish Fbxo7 homolog protein (zFbxo7) is expressed abundantly in the normal zebrafish brain. Next, we used two zFbxo7-specific morpholinos (targeting protein translation and mRNA splicing, respectively), to knock down the zFbxo7 expression. The injection of either of these zFbxo7-specific morpholinos in the fish embryos induced a marked decrease in the zFbxo7 protein expression, and a range of developmental defects. Furthermore, whole-mount in situ mRNA hybridization showed abnormal patterning and significant decrease in the number of diencephalic tyrosine hydroxylase-expressing neurons, corresponding to the human nigrostriatal or ventral tegmental dopaminergic neurons. Of note, the number of the dopamine transporter-expressing neurons was much more severely depleted, suggesting dopaminergic dysfunctions earlier and larger than those due to neuronal loss. Last, the zFbxo7 morphants displayed severe locomotor disturbances (bradykinesia), which were dramatically improved by the dopaminergic agonist apomorphine. The severity of these morphological and behavioral abnormalities correlated with the severity of zFbxo7 protein deficiency. Moreover, the effects of the co-injection of zFbxo7- and p53-specific morpholinos were similar to those obtained with zFbxo7-specific morpholinos alone, supporting further the contention that the observed phenotypes were specifically due to the knock down of zFbxo7. In conclusion, this novel vertebrate model reproduces pathologic and behavioral hallmarks of human parkinsonism (dopaminergic neuronal loss and dopamine-dependent bradykinesia), representing therefore a valid tool for investigating the mechanisms of selective dopaminergic neuronal death, and screening for modifier genes and therapeutic compounds

    Heritability of fasting glucose levels in a young genetically isolated population

    Get PDF
    Aims/hypothesis: The heritability of fasting glucose levels in Northern European populations has been examined previously in twins and samples of small pedigrees. In this study the heritability of fasting plasma glucose (FPG) was estimated in participants in the Erasmus Rucphen Family study, who were members of a single pedigree from a young genetic isolate. We also studied the relationship between FPG and components of the metabolic syndrome. Methods: FPG, lipid, blood pressure and body composition measurements were completed for 852 participants without diabetic medication. The most significant predictors of FPG were used as covariates in heritability estimation. The sibship effect, which is a composite of genetic dominance and shared early-life environmental effects, was included as a random effect. Results: The age- and sex-adjusted heritability of log normal-transformed FPG was 36.6%. When further adjusted for metabolic risk factors, namely body composition parameters, systolic blood pressure, triglycerides and cholesterol:HDL ratio, the heritability estimate rose to 42.8%. After adjustment for the sibship effect, the additive component of heritability was estimated to be 28.3% (age-and sex-adjusted) and 24.9% (full model). Conclusions/ interpretation: Genes control a significant proportion of the variance in FPG levels. Adjustment for other metabolic risk factors did not substantially change the heritability estimate, which suggests that a large part of the variance in FPG levels is due to genes that act through pathways that are independent of those controlling body composition, blood pressure and lipid levels

    Heritability of serum iron, ferritin and transferrin saturation in a genetically isolated population, the Erasmus Rucphen Family (ERF) study

    Get PDF
    Background: Iron has been implicated in the pathogenesis of various disorders. Mutations in the HFE gene are associated with an increase in serum iron parameters. The aim of this study was to estimate the heritability in serum iron parameters explained by HFE. Methods: Ninety families (980 subjects) were included in the present analysis. Heritability estimation was conducted using the variance component method. The likelihood ratio test was used to compare models. Phenotypic and genetic correlations between serum iron parameters were calculated. Results: The heritability (h 2 ± SE) estimates were 0.23 ± 0.07 (p < 0.0001) for iron, 0.29 ± 0.09 (p < 0.0001) for ferritin and 0.28 ± 0.07 (p < 0.0001) for transferrin saturation while adjusting for age, age 2 and sex. The HFE genotypes explained between 2 to 6% of the sex and age-adjusted variance in serum iron, ferritin and transferrin saturation. There was a high genetic correlation between serum iron parameters, suggesting pleiotropy between these traits. Conclusion: A substantial proportion of the variance of iron, ferritin and transferrin saturation can be explained by additive genetic effects, independent of sex and age. The HFE genotypes explained a considerable proportion of serum iron parameters and may be an important factor in the complex iron network. Copyrigh

    Macroorchidism in FMR1 knockout mice is caused by increased Sertoli cell proliferation during testicular development

    Get PDF
    The fragile X syndrome is the most frequent hereditary form of mental retardation. This X-linked disorder is, in most cases, caused by an unstable and expanding trinucleotide CGG repeat located in the 5'-untranslated region of the gene involved, the fragile X mental retardation 1 (FMR1) gene. Expansion of the CGG repeat to a length of more than 200 trinucleotides results in silencing of the FMR1 gene promoter and, thus, in an inactive gene. The clinical features of male fragile X patients include mental retardat
    corecore