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ABSTRACT
The fragile X syndrome is the most frequent hereditary form of

mental retardation. This X-linked disorder is, in most cases, caused
by an unstable and expanding trinucleotide CGG repeat located in the
59-untranslated region of the gene involved, the fragile X mental
retardation 1 (FMR1) gene. Expansion of the CGG repeat to a length
of more than 200 trinucleotides results in silencing of the FMR1 gene
promoter and, thus, in an inactive gene.

The clinical features of male fragile X patients include mental
retardation, autistiform behavior, and characteristic facial features.
In addition, macroorchidism is observed. To study the role of Sertoli
cell proliferation and FSH signal transduction in the occurrence of
macroorchidism in fragile X males, we made use of an animal model

for the fragile X syndrome, an Fmr1 knockout mouse.
The results indicate that in male Fmr1 knockout mice, the rate of

Sertoli cell proliferation is increased from embryonic day 12 to 15 days
postnatally. The onset and length of the period of Sertoli cell prolif-
eration were not changed compared with those in the control males.
Serum levels of FSH, FSH receptor messenger RNA expression, and
short term effects of FSH on Sertoli cell function, as measured by
down-regulation of FSH receptor messenger RNA, were not changed.

We conclude that macroorchidism in Fmr1 knockout male mice is
caused by an increased rate of Sertoli cell proliferation. This increase
does not appear to be the result of a major change in FSH signal
transduction in Fmr1 knockout mice. (Endocrinology 139: 156–162,
1998)

THE FRAGILE X syndrome, an X-linked hereditary dis-
order, is the most frequent form of inherited mental

retardation in humans (see for reviews, Refs. 1 and 2). The
gene involved in this disorder, the FMR1 gene, is located in
a region of the X-chromosome, Xq27.3, that cytogenetically
displays a fragile site in patients. The FMR1 gene encodes a
cytoplasmic protein with a molecular mass varying from
70–80 kDa, which contains RNA-binding protein motifs (3–
5). The fragile X syndrome is caused by the lengthening of a
trinucleotide CGG repeat that results in FMR1 gene silencing
(6–9). The repeat is present in the 59-untranslated region of
the FMR1 gene and shows 6–50 CGG units in the normal
population (9). When the repeat length has increased to a
length of ;50–200 CGGs, it is called a premutation, as male
carriers do not have any symptoms (7, 9, 10). However,
female carriers of a premutation show a 4- to 5-fold increase
in the incidence of dizygous twinning and increased occur-
rence of premature menopause (11–13). In the case of a full
mutation, when the number of repeats exceeds 200, all male
individuals are affected, whereas 50–70% of the females with
1 affected allele express the fragile X clinical phenotype (14–

16). In addition to expansion of the CGG repeat, complete or
partial deletions of the gene and point mutations have been
reported in fragile X patients (17–19). The classical fragile X
phenotype in male patients not only includes characteristic
facial features and behavioral and learning problems, but
also the occurrence of macroorchidism (20–24). In the large
testes of fragile X males, no consistent pathological abnor-
malities have been observed. In general, tubule diameter is
mildly reduced, and early spermatogenesis is normal, al-
though malformed spermatids in the later stages of sper-
matogenesis were identified (25, 26). Testicular enlargement
appears to be caused mainly by interstitial edema (27), al-
though in one report it was found that the macroorchidism
was caused by a large increase in tubular length (28). Rudelli
et al. (29) suggested that the increase in testis size in fragile
X males initiates prenatally. Thus, the cause of macroorchid-
ism in fragile X males remains unclear.

Recently, a mouse model for fragile X was developed that
mimics the gene-silencing effect of the extension of the CGG
repeat by inactivation of the Fmr1 gene through homologous
recombination (30). These mice show some characteristics,
such as learning difficulties and hyperactivity, that may be
related to the features found in fragile X patients. Macro-
orchidism was also identified in the male Fmr1 knockout
mice. All structural features of the testis in these mice, such
as tubule diameter, interstitial cell number, and overall sper-
matogenesis, appeared to be normal (30). As these observa-
tions are at least partially consistent with the macroorchid-
ism found in human fragile X patients, we used the Fmr1
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knockout mouse as a model to study the mechanism of the
development of macroorchidism.

In the adult, testis size is mainly a reflection of the number
of germ cells present. Inhibition of spermatogenesis, e.g. by
hypophysectomy, results in a spectacular reduction in testis
weight. As only a limited number of germ cells can be sup-
ported by one Sertoli cell (31), the maximal quantity of germ
cells per testis is dependent on the number of Sertoli cells
present. Therefore, the increased testis size found in Fmr1
knockout mice might be a consequence of a higher number
of Sertoli cells that causes an increase in tubule length with
unchanged tubule diameter. We hypothesized that the in-
creased testis size of adult Fmr1 knockout mice is the result
of an increase in Sertoli cell proliferation, subsequently caus-
ing increased germ cell numbers and elevated testis weight.

In the present paper, we report on experiments on Sertoli
cell proliferation and FSH signal transduction in the mouse
Fmr1 knockout model. Mitogenic activity of Sertoli cells was
determined at different time points during fetal and post-
natal life. Because the pituitary hormone FSH is a main
determinant of Sertoli cell proliferation and differentiation
(31, 32), FSH signal transduction was evaluated through
determination of serum FSH concentrations, testicular FSH
receptor messenger RNA (mRNA) levels, and short term
FSH-induced down-regulation of FSH receptor mRNA in
vivo. We found that macroorchidism in Fmr1 knockout mice
is caused by increased overall perinatal Sertoli cell prolifer-
ation. Changes in FSH signal transduction were not ob-
served, suggesting that the increase in Sertoli cell prolifer-
ative activity is not the result of a prominent change in FSH
action.

Materials and Methods
Animals and determination of the mouse Fmr1 genotype

The Fmr1 knockout mice were produced and described by Bakker et
al. (30). The mutant mice, in which exon 5 of the Fmr1 gene was inac-
tivated through interruption with a neo cassette using homologous re-
combination, displayed learning deficits and hyperactivity, and an ap-
proximately 30% increase in adult testis size.

To analyze the genotype of the mice, genomic DNA was isolated by
incubating tissue (tail or fetal head) overnight at 55 C in 300 ml 10 mm
Tris-HCl (pH 7.5), 400 mm NaCl, 2 mm EDTA, 66.7 mg/ml proteinase K
(Boehringer Mannheim, Mannheim, Germany), and 1% SDS. The next
day, 100 ml 6 m NaCl was added, and the mixture was vortexed vig-
orously for 15 sec. Subsequently, the solution was centrifuged at max-
imum speed for 15 min. To the supernatant, 2 vol 100% ethanol were
added, and the precipitated DNA was washed with 70% ethanol. After
the DNA was air-dried for a few minutes, it was dissolved in 100 ml TE
buffer (10 mm Tris-HCl, pH 7.5, and 1 mm EDTA, pH 8), 3 ml of which
were used in a PCR reaction.

Screening for the presence or absence of the wild-type allele was
performed using primers S1 (59-GTGGTTAGCTAAAGTGAGGATGAT-
39) and S2 (59-CAGGTTTGTTGGG-ATTAACAG ATC-39). Primers M2
(59-ATCTAGTCATGCTATGGATATCAGC-39) and N2 (59-GTGGGC-
TCTATGGCTTCTGAGG-39) were used to screen for the presence of the
knockout allele, and primers C8 (59-ACGAGAAGATCTGATGGGTT-
TAGC-39) and Km4 (59-GTGGAACCTGTATGACATCTTCA-39) were
used as an internal DNA control. For the PCR, 12.5 pmol of either
primers M2 and N2 or primers S1 and S2 were used in a PCR buffer
containing 1.2 mm dithiothreitol, 10 mm Tris-HCl (pH 8.3), 50 mm KCl,
1.5 mm MgCl2, 0.25 mm deoxy-NTPs (Pharmacia, Uppsala, Sweden), 0.5
mm spermidine (Sigma, St. Louis, MO), 0.2 pmol primer C8, 0.2 pmol
primer Km4, and 0.2 U Supertaq (SphearoQ, Leiden, The Netherlands)
in a total volume of 25 ml.

The PCR reactions were preheated at 94 C for 5 min. Thirty PCR cycles

(30-sec denaturation at 94 C, 30-sec annealing at 65 C, 1.5-min extension
at 72 C) were performed, followed by an extra extension step of 10 min
at 72 C. The products were electrophoresed on a 1.5% agarose gel.

Measurement of serum FSH

Serum from both Fmr1 knockout and wild type mice was collected.
Due to the very low amounts obtained from the smaller animals, sera
from two 1-day-old and two 3-day-old mice were pooled. FSH was
measured by RIA (33), using antibodies developed by Welschen et al.
(34). All results are expressed in terms of NIDDK rat FSH RP-3. The
intraassay variation was 5.1%, and all samples were measured in one
assay.

Sertoli cell labeling index in Fmr1 knockout and wild-type
mice

Male mice of different ages were injected ip with 150 mg/g BW
5-bromo-29-deoxyuridine (BrdU; Boehringer Mannheim). After 2 h, tes-
tes were collected, fixed in methacarn [60% (vol/vol) methanol, 30%
(vol/vol) chloroform, and 10% (vol/vol) acetic acid] for 1 h or overnight.
Subsequently, the fixative was replaced with 70% ethanol, and the tissue
was kept in ethanol at 4 C. The testes were embedded in glycol methac-
rylate (Technovit 7100, Kulzer, Wehrheim, Germany), and 3-mm sections
were cut. The sections were processed immunohistochemically using the
immunogold-silver staining technique as described by van de Kant and
de Rooij (35), except that the second and third antibodies were replaced
by biotinylated a mouse IgG and avidin-biotin-peroxidase complex
(Elite ABC kit PK 6102, Vector Laboratories, Burlingame, CA), respec-
tively. Finally, the sections were silver stained after incubation with
a-horseradish peroxidase-gold (10 nm; Aurion, Wageningen, The Neth-
erlands). The sections were counterstained with Gill’s hematoxylin
no. 3.

The histological slides were coded, and the percentage of labeled
Sertoli cells was determined in a blinded manner, studying 500 Sertoli
cells in each animal. In sections of testes from 15-day-old knockout (n 5
6) and wild-type (n 5 5) mice, the percentage of tubular cross-sections
containing spermatocytes was determined by examination of 100 cross-
sections of the testis from each animal.

Testicular FSH receptor mRNA expression

Testicular FSH receptor mRNA expression was measured at different
ages or at different time points after injection of 15-day-old male mice
with 0.15 IU/g BW human FSH (Metrodin, Serono, Geneva, Switzer-
land). Total testicular RNA was isolated using the LiCl-urea method (36).
Mouse FSH receptor antisense RNA probes were generated from a
564-bp EcoRV fragment corresponding to bp 1236–1799 of the mouse
FSH receptor gene, subcloned in pBluescript KS (pBmFSHR) using T3
RNA polymerase and [32P]UTP. A rat glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) probe corresponding to bp 197–310 of the rat
GAPDH gene (37) was used to determine the relative amount of RNA
loaded on the gel. Five or 10 mg total RNA were analyzed by ribonu-
clease (RNase) protection assay according to the method of Sambrook
et al. (38).

Statistical analysis

Results are presented as the mean 6 sem. ANOVA and Duncan’s new
multiple range test were used for statistical evaluation of data. Differ-
ences were considered significant at P # 0.05.

Results
Testicular development in Fmr1 knockout mice

At 15 days of age, Fmr1 knockout mice have larger testes
than their wild-type littermates [weight of two testes in wild-
type mice, 17.2 mg 6 0.71 (6sem; n 5 9); in Fmr1 knockout
mice, 21.9 mg 6 1.74 (n 5 6); P , 0.009]. Younger Fmr1
knockout animals tended to have larger testis weights, but
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these differences were not statistically significant (Fig. 1). As
a result of the commencement of the first wave of spermat-
ogenesis, seminiferous tubule diameter doubled between
postnatal days 1 and 15 (results not shown), but no difference
between control and Fmr1 knockout mice could be discerned.
There was no difference in the general testicular morphology
between the two groups.

The progress of the first wave of spermatogenesis was
determined by the percentage of tubular cross-sections
showing spermatocytes on day 15 after birth. In Fmr1 knock-
out mice and wild-type mice, 72 6 12 and 70 6 12 (mean 6
sem) of the cross-sections contained spermatocytes. The most
advanced type of spermatogenic cells present at 15 days
varied considerably, but ranged from early to midpachytene
spermatocytes in both the wild-type and knockout mice (Fig.
2), indicating that the increase in testis size in Fmr1 knockout
mice is not caused by an earlier onset of spermatogenesis.

Mitotic activity of testicular Sertoli cells

The proliferative activity of Sertoli cells in the developing
testis of Fmr1 knockout mice was compared with that in
wild-type littermates to determine whether the increase in
testis weight was caused by increased mitogenic activity of
the Sertoli cells or a prolonged period of Sertoli cell prolif-
eration. Mice of different ages were injected ip with BrdU,
and their testes were isolated after 2 h. Subsequently, the
labeling index of Sertoli cells was determined as a measure
of the proliferative activity of these cells. As depicted in Fig.
3, the overall pattern of Sertoli cell proliferation is similar in
mice of both genotypes, i.e. the maximal labeling index is
found on day 17 postcoitum, whereas Sertoli cell prolifera-
tion comes to a stop on postnatal day 15. Thus, it appears that
the developmental period during which of Sertoli cell divi-
sions normally occur does not change in the Fmr1 knockout

mice. However, as can be clearly seen in Fig. 3, overall com-
parison of the values for Fmr1 knockout mice and wild-type
mice at all time points revealed a significant increase of
19.4 6 4.8% (P 5 0.0003, by ANOVA). The labeling index
values at embryonic day 15 (E15) and E17 are significantly
different between wild-type and Fmr1 knockout mice (P #
0.05, by Duncan’s new multiple range test).

Evaluation of FSH signal transduction

A main determinant of Sertoli cell proliferation and dif-
ferentiation is the glycoprotein hormone FSH, which is pro-
duced in the pituitary gland. We evaluated different com-
ponents of the FSH signal transduction pathway to
determine whether FSH might be involved in the change in
testis weight in Fmr1 knockout mice. Serum levels of FSH
were determined in trunk blood from mice at different ages.
The FSH serum concentration of control animals increased
from 2.3 ng/ml on day 1 to 18.6 ng/ml on day 15, and there
was no statistically significant difference from the values in
the Fmr1 knockout mice (Fig. 4).

Another parameter that influences FSH signal transduc-
tion is the level of FSH receptor mRNA expression in the
Sertoli cells. FSH receptor mRNA levels and GAPDH mRNA
as a measure of the amount of RNA in the assay were de-
termined using the RNase protection assay (Fig. 5). Total
testicular RNA was used, because the FSH receptor is present
in Sertoli cells only. FSH receptor mRNA expression in both
wild-type and Fmr1 knockout animals was maximal on post-
natal day 1 and decreased to approximately 50% on day 15.
A slight, but not statistically significant, increase in the level
of FSH receptor mRNA expression was observed in the Fmr1
knockout mice (Fig. 5), probably as a result of an increased
number of Sertoli cells in the testis.

Although no major changes in serum FSH levels and FSH
receptor mRNA were observed, the effectiveness of FSH
signal transduction might be changed in the Fmr1 knockout
Sertoli cells. Previously, we have shown that the FSH recep-
tor mRNA level in immature rat testes is down-regulated
very rapidly by FSH through the cAMP pathway due to
destabilization of the FSH receptor mRNA (39). The Fmr1
protein might affect the efficiency of coupling by an as yet
unknown mechanism or exert a more direct effect by chang-
ing FSH receptor mRNA stability by binding to the FSH
receptor message with one or more of its RNA-binding re-
gions (3, 5). Mice were injected at the age of 15 days with
human FSH, and testicular FSH receptor mRNA levels were
determined at different time points after the injection (Fig. 6).
It was observed that also in mice, FSH down-regulates its
cognate receptor mRNA very rapidly to 30% of control levels.
However, neither the kinetics nor the measure of this effect
were changed in the absence of the Fmr1 protein.

Discussion

Testicular size is mainly determined by the number of
Sertoli cells that support the proliferation and differentiation
of a species-dependent maximum number of germ cells (31).
We limited our study of Sertoli cell proliferation in Fmr1
knockout mice to the last period of fetal development and the
first 2 weeks after birth, because a population of identifiable

FIG. 1. Testis weight in Fmr1 knockout mice (F) and wild-type lit-
termates (E). At 15 days of age, a significant increase in testis weight
was observed (P , 0.009). The combined weight of both testes is given.
The numbers of animals in each group were (wild-type and Fmr1
knockout mice, respectively): day 1, 9 and 9; day 3, 3 and 9; day 5, 7
and 5; day 9, 3 and 7; and day 15, 7 and 4. Data represent the mean 6
SEM (n 5 6–9).
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Sertoli cells is present from E12, and the Sertoli cells have
stopped dividing on postnatal day 15 (40, 41).

The magnitude of Sertoli cell proliferative activity is
strongly regulated by FSH, whereas the end of the period of
mitotic activity appears to be controlled by thyroid hormone.
Exogenous administration of FSH to immature rats or pri-

FIG. 2. Spermatogenesis in 15-day-old wild-type (A) and Fmr1
knockout (B) mice is quite comparable. *, Tubules in which spermat-
ogenesis has proceeded up to spermatogonia; F, tubules with early
pachytene spermatocytes; Œ, tubules with midpachytene spermato-
cytes. Bar 5 20 mm; magnification, 3500.

FIG. 3. Sertoli cell labeling index in testes of Fmr1 knockout mice (F)
and wild-type mice (E; P 5 0.0003). Two hours after an ip injection
of BrdU, testes of mice of different ages were collected, and the BrdU
labeling index of the Sertoli cells was determined. The numbers of
animals in each group were (wild-type and Fmr1 knockout mice,
respectively): day 27, 3 and 8; day 25, 7 and 4; day 23, 12 and 6; day
1, 7 and 6; day 3, 4 and 6; day 5, 6 and 6; day 9, 3 and 5; and day 15,
3 and 4. Data represent the mean 6 SEM. Overall comparison of the
values of Fmr1 knockout mice and wild-type mice at all time points
revealed a significant increase of 19.4 6 4.8% (P 5 0.0003, by
ANOVA). The asterisks indicate significant differences between Fmr1
knockout mice and wild-type mice on days 25 and 23 (P # 0.05, by
Duncan’s new multiple range test).

FIG. 4. Serum FSH levels in Fmr1 knockout mice (F) and wild-type
littermates (E). The numbers of animals in each group were (wild-type
and Fmr1 knockout mice, respectively): day 1, 4 and 8; day 3, 3 and
8; day 5, 7 and 4; day 9, 7 and 8; and day 15, 9 and 5. Data represent
the mean 6 SEM
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mates or addition of FSH to cultured Sertoli cells increases
the mitotic activity of Sertoli cells (42–45). Also, hemicastra-
tion of immature rats has been demonstrated to increase the
mitotic activity of Sertoli cells in the remaining testis. The
mechanism underlying this observation is found within the
hypothalamic-pituitary-testicular axis. After unilateral cas-
tration, production of inhibin by the Sertoli cells decreases,
resulting in less negative feedback action on the pituitary and
an increased FSH level that stimulates the Sertoli cells to
divide (46–48). Decapitation of fetuses in utero to eliminate
the fetal hypothalamo-pituitary system or the reduction of
FSH in fetuses by administration of FSH antibodies also
affects Sertoli cell function during fetal development (49).
FSH binding to fetal rat testis is observed on day 17.5 post-
coitum and is increased significantly by 20.5 and 21.5 days
of fetal life (50). Furthermore, Orth et al. (41), showed that
during these days of fetal life, the rate of Sertoli cell prolif-
eration in rats is maximal and declines thereafter, suggesting
that the Sertoli cells are probably most sensitive to the mi-
togenic activity of FSH at the end of the fetal period and
shortly after birth. The important, but not essential, role of
FSH in Sertoli cell proliferation was recently demonstrated in
a FSHb knockout mouse, which showed more than a 50%
decrease in adult testis weight (51). This decrease could not
be explained by impaired spermatogenesis alone, because
the FSHb knockout males were fertile and showed only a
slight decrease in tubule diameter, with normal appearing
Sertoli cells and seminiferous epithelium.

Hypothyroidism, induced by the administration of 6-
propyl-2-thiouracil to rats, leads to retardation of Sertoli cell

differentiation and an extended period of Sertoli cell prolif-
eration, resulting in an increased number of Sertoli cells and
macroorchidism (52–54). In contrast, a shorter period of Ser-
toli cell division and faster differentiation of Sertoli cells are
found both in vitro in the presence of thyroid hormone and
in vivo in hyperthyroid animals (55, 56). An effect of thyroid
hormone on the FSH level in vivo could be excluded because
a slight decrease in serum FSH was found after both
treatments.

From our studies of Sertoli cell proliferation in the Fmr1
knockout mice, it appeared that the period of Sertoli cell
proliferation had not changed, but, rather, the proliferative
activity of the Sertoli cells in Fmr1 knockout mice was sig-
nificantly higher, resulting in an increase in germ cell number
and testicular weight. These results indicate that the thyroid
hormone status of the Fmr1 knockout mice is not changed
and prompted us to investigate several elements of the FSH
signal transduction pathway.

The circulating FSH levels in Fmr1 knockout mice were not
elevated compared with those in wild-type littermates. Sim-
ilarly, there is no evidence for increased FSH in fragile X
humans (57, 58). The level of FSH receptor mRNA in the testis
of Fmr1 knockout mice was slightly, but not significantly,
higher compared with the wild-type level. The increased
number of Sertoli cells in the testes of Fmr1 knockout mice
could have caused this, although other possibilities, such as
a change in RNA stability, cannot be ruled out. The RNA-
binding activity of FMRP could play a role in the regulation

FIG. 5. FSH receptor mRNA expression in Fmr1 knockout mice (F)
and wild-type mice (E) of different ages. Total testicular RNA was
isolated and subjected to RNase protection assay with FSH receptor
and GAPDH probes. Subsequently, the FSH receptor/GAPDH mRNA
ratio was determined. Data represent the mean 6 range (n 5 2).

FIG. 6. FSH receptor mRNA down-regulation in Fmr1 knockout (F)
and wild-type mice (E). Fmr1 knockout male mice and wild-type
littermates were injected (ip) with metrodin and killed at different
time points after injection. Total testicular RNA was isolated and
subjected to RNase protection assay with FSH receptor and GAPDH
probes. Subsequently, the FSH receptor/GAPDH mRNA ratio was
determined. Data represent the mean 6 range (n 5 2).
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of FSH receptor mRNA stability, but the FSH-induced down-
regulation of FSH receptor mRNA, which is caused by a
decrease in receptor mRNA stability (39), was not different
in Fmr1 knockout mice.

We conclude that a change in circulating FSH levels or
signal transduction through the FSH receptor is not involved
in the increase in testis size in Fmr1 knockout mice. The
testicular localization of the Fmr1 protein (FMRP) and mRNA
is still not clear, and the primary cause of the increased testis
size in Fmr1 knockout mice may be found in either Sertoli
cells or germ cells. Recently, it has been reported that con-
traction of the full mutation to premutation values (,200)
occurs in germ cells of human fragile X male fetuses that
carry the full mutation in their somatic cells (59). These ob-
servations indicate that expression of FMRP in germ cells in
an environment of somatic cells that lack FMRP protein still
results in macroorchidism, thus diminishing the potential
role of germ cells in macroorchidism.
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