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Abstract

Recessive mutations in the F-box only protein 7 gene (FBXO7) cause PARK15, a Mendelian form of early-onset, levodopa-
responsive parkinsonism with severe loss of nigrostriatal dopaminergic neurons. However, the function of the protein
encoded by FBXO7, and the pathogenesis of PARK15 remain unknown. No animal models of this disease exist. Here, we
report the generation of a vertebrate model of PARK15 in zebrafish. We first show that the zebrafish Fbxo7 homolog protein
(zFbxo7) is expressed abundantly in the normal zebrafish brain. Next, we used two zFbxo7-specific morpholinos (targeting
protein translation and mRNA splicing, respectively), to knock down the zFbxo7 expression. The injection of either of these
zFbxo7-specific morpholinos in the fish embryos induced a marked decrease in the zFbxo7 protein expression, and a range
of developmental defects. Furthermore, whole-mount in situ mRNA hybridization showed abnormal patterning and
significant decrease in the number of diencephalic tyrosine hydroxylase-expressing neurons, corresponding to the human
nigrostriatal or ventral tegmental dopaminergic neurons. Of note, the number of the dopamine transporter-expressing
neurons was much more severely depleted, suggesting dopaminergic dysfunctions earlier and larger than those due to
neuronal loss. Last, the zFbxo7 morphants displayed severe locomotor disturbances (bradykinesia), which were dramatically
improved by the dopaminergic agonist apomorphine. The severity of these morphological and behavioral abnormalities
correlated with the severity of zFbxo7 protein deficiency. Moreover, the effects of the co-injection of zFbxo7- and p53-
specific morpholinos were similar to those obtained with zFbxo7-specific morpholinos alone, supporting further the
contention that the observed phenotypes were specifically due to the knock down of zFbxo7. In conclusion, this novel
vertebrate model reproduces pathologic and behavioral hallmarks of human parkinsonism (dopaminergic neuronal loss and
dopamine-dependent bradykinesia), representing therefore a valid tool for investigating the mechanisms of selective
dopaminergic neuronal death, and screening for modifier genes and therapeutic compounds.
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Introduction

Parkinson’s disease (PD), the second most common neurode-

generative disorder after Alzheimer’s disease, is characterized by

the progressive loss of nigrostriatal dopaminergic neurons, and the

formation of alpha-synuclein-containing protein aggregates,

termed Lewy bodies, in surviving neurons [1]. The molecular

mechanisms underlying PD remain poorly understood, but the

recent identification of rare inherited forms of parkinsonism has

opened novel research avenues into the disease pathogenesis [2,3].

Mutations in the alpha-synuclein (PARK1), leucine-rich repeat kinase 2

(PARK8), and vacuolar protein sorting 35 (VPS35) genes cause

autosomal dominant forms, while mutations in the parkin

(PARK2), PINK1 (PARK6), DJ-1 (PARK7), ATP13A2 (PARK9),

and FBXO7 (PARK15) genes cause autosomal recessive forms of

parkinsonism [3,4]. Whether the mutations in the different forms

of monogenic parkinsonisms converge on the same or different

cellular pathways remains currently unclear. However, under-

standing the mechanisms of these Mendelian parkinsonisms might

provide important clues into the pathways leading to the

degeneration of the dopaminergic neurons, which might also be

involved in the common forms of PD. For example, there are

evidences of functional links between the alpha-synuclein and the

ATP13A2 pathways [5,6]. Our group characterized mutations in

the F-box only protein 7 (FBXO7) gene, encoding the F-box protein 7

(FBXO7), as the cause of PARK15 [7]. PARK15 patients display

dramatic loss of nigrostriatal dopaminergic neurons, and they

suffer from juvenile parkinsonism, with varying degrees of

pyramidal disturbances. Of note, the parkinsonism displays a

good response to levodopa therapy, indicating the relative integrity

of the striatal neuronal circuitry acting downstream to the

nigrostriatal dopaminergic defect [7,8].

FBXO7 is a member of the F-box-containing protein (FBP)

family, characterized by a ,40-amino acids domain (the F-box).

FBPs might become part of SCF (Skp1, Cullin1, F-box protein)

ubiquitin ligase complexes, and play roles in ubiquitin-mediated

proteasomal degradation [9]. We recently reported that two

protein isoforms are expressed from the FBXO7 gene, and that

PARK15 patients display a severe depletion of the longer isoform,

which normally localizes in the cell nucleus. The activity of

FBXO7 in the nucleus appears therefore crucial for the
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maintenance of brain neurons in humans and the pathogenesis of

PARK15 [10]. However, the precise function of the FBXO7

proteins remains largely unknown, and animal models of PARK15

have not been reported so far. Understanding why the loss of the

function of this protein leads to PARK15 might illuminate the

mechanisms of selective dopaminergic neuronal death, which

could also be important for PD in general.

There is a growing interest in the use of zebrafish (Danio rerio) for

modeling neurodegenerative diseases in vertebrates [11,12]. High

degrees of evolutionary conservation are present between zebrafish

and human homologue proteins and pathways involved in

neurodegenerative diseases. Furthermore, zebrafish offers advan-

tages compared with other vertebrate models, including a rapid

and external embryonic development, and availability of rapid and

efficient tools for genetic manipulation [11,12].

Here, we report the generation of a first vertebrate animal

model of PARK15 by morpholino (MO)-mediated knock-down of

the FBXO7 homologue gene in the zebrafish (zFbxo7). The

morphants display dopaminergic neuronal loss and dopamine-

dependent locomotor defects, thereby reproducing pathologic and

behavioral hallmarks of the human disease. This is a novel

important tool for investigating the mechanisms of selective

dopaminergic neuronal death, and for the implementation of

high-throughput screening of modifier genes or compounds.

Results

Characterization of the zFbxo7 gene in zebrafish
The human FBXO7 gene (hFBXO7), expresses two transcripts

(ENST00000266087 and ENST00000382058), resulting from the

usage of alternatively spliced 59-exons, and encoding two FBXO7

protein isoforms of 522 and 443 amino acids (also referred to as

isoform 1 and isoform 2), only differing at the N-terminus [10]. In

the zebrafish genome, a single homologue to hFBXO7, here termed

zFbxo7, is annotated (ENSDART00000082132). Its 1452-nucleo-

tide transcript is predicted to encode a protein of 483 amino acids,

which displays the same domain organization as the human longer

FBXO7 isoform 1, and shows an overall 40% amino acid identity,

rising to 65% identity and 78% similarity in the F-box domain

(Figure 1A). The high level of sequence identity and similarity

suggests functional conservation between zebrafish and human

Fbxo7 proteins.

To confirm our in silico analyses, we amplified and sequenced

the zFbxo7 cDNA from the tupfel long fin (TL) zebrafish. This

revealed that the zFbxo7 transcript is the product of 10 exons, as

also annotated in Ensembl. Compared with the sequence

annotated in Ensembl (ENSDART00000082132) we only detect-

ed one polymorphic variant, a heterozygous insertion of two CAG

triplets at position +448 from the A of the ATG start codon,

leading to in-frame incorporation of two additional residues in a

glutamine stretch.

zFbxo7 protein expression throughout embryonic
development and in adult tissues

The pattern of zFbxo7 protein expression was studied by

Western blot (WB), using a mouse polyclonal antibody raised

against full-length human FBXO7, which was previously validated

by us for the human FBXO7 proteins in both WB and

immunohistochemistry [10]. A single band corresponding to the

predicted size of the zebrafish zFbxo7 protein was detectable at

12 hours post fertilization (hpf), which gradually increased in

abundance during pharyngula, hatching stages, reaching a peak at

the larvae stage (72 hpf) (Figure 1B). In 8-month-old adult wild

type (WT) zebrafish, the zFbxo7 protein was abundantly expressed

in the brain and liver, and hardly detected in the heart and kidney

(Figure 1C). We further characterized the expression of the

zFbxo7 protein in the brain by immunohistochemistry using the

same antibody. The zFbxo7 immunoreactivity was ubiquitously

present, more prominent in neurons of the olfactory bulb and

diencephalon, intermediate in cerebellum and medulla oblongata,

and weaker in the optic tectum and habenula (Figure 1D). The

zFbxo7 immunoreactivity was prominent in the neuronal nuclei,

but also present in the cytoplasm.

Knock down of zFbxo7 results in developmental defects
Two non-overlapping zFbxo7 MOs were designed, one targeting

the ATG translation initiation site (ATG-start-codon-targeting

MO, ATG-MO) and the other targeting the exon2/intron2 splice

site (splice-site-targeting MO, SP-MO) of zFbxo7, respectively. The

MOs were injected into the embryo yolk at one-cell or two-cell

stage. No gross morphological abnormalities were observed at 24

hpf and 48 hpf in the MOs injected embryos, compared to non-

injected ones (data not shown). A range of morphological

phenotypes was observed at 72 hpf, including curly tails, heart

edema, and heart malformations (Figure 2A). These phenotypes

were similar in the morphants treated with ATG-MO and in those

treated with SP-MO. The morphants were then divided in two

groups, according to the severity of their phenotypes. Lethality was

also quantified. The percentages of mild and severe phenotypes

and of lethality associated with the injection of the ATG-MO and

the SP-MO (N = 300 morphants for each of the two MO), are

shown in the Figure 2B. Injection of the ATG-MO resulted in

17% lethality, 42% mild phenotype (ie. characterized by heart

edema and slightly curly tail, ATG-MO-Mild), and 29% severe

phenotype (ie. severe heart deformation and severe curly tail,

ATG-MO-Severe). The morphants injected with SP-MO showed

12% lethality, 15% mild phenotype (SP-MO-Mild) and 67%

severe phenotype (SP-MO-Severe).

The efficiency of knock-down was monitored by measuring the

zFbxo7 protein levels using western blot. Markedly and signifi-

cantly decreased expression levels were observed after the injection

of either MOs (Figure 3). Of note, the morphants displaying severe

phenotypes showed more severe zFbxo7 protein depletion (to

,16% of normal protein levels in the ATG-MO morphants, and

to ,10% of normal levels in SP-MO morphants), compared with

those displaying mild phenotypes (,53% of normal protein levels

in the ATG-MO morphants, and ,35% of normal levels in SP-

MO morphants) (Figure 3B). This correlation between severity of

protein depletion and severity of phenotype was present for both

zFbxo7-targeting MO strategies. The lowest levels of zFbxo7

protein expression were seen in SP-MO-Severe morphants

(Figure 3).

zFbxo7 knock down leads to abnormal patterning and
dopaminergic neuronal cell loss

To investigate the effect of the zFbxo7 knock down on the

development of the brain dopaminergic neurons, we studied the

expression of the tyrosine hydroxylase (th), and the dopamine transporter

(slc6a3, dat) mRNA, using whole mount in situ hybridization

(WISH). Eighty morphants were analyzed in each experiment. In

the zFbxo7 morphants, the patterning of the th+/dat+ diencephalic

dopaminergic neurons was disturbed (neurons were organized in

more compact groups) compared to wild type animals (Figure 4A

and 4C). Furthermore, a significant reduction (40%) in the

number of th+ neurons was seen, but only in the SP-MO-severe

morphants compared with WT zebrafish (Figure 4A and 4B). On

the contrary, the number of dat+ neurons was significantly reduced

in both the ATG-MO and SP-MO morphants, and more
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dramatically in the morphants with more severe phenotypes

(ATG-MO-Severe and SP-MO-Severe) where the dat+ neurons

were hardly detectable (Figure 4C and 4D).

zFbxo7 knock down results in locomotor defects, which
are improved by apomorphine

ATG-MO-Severe and SP-MO-Severe morphants showed

hardly any motor activities. Further locomotor analyses were

therefore focused on the ATG-MO-Mild and SP-MO-Mild

morphants. In order to assess the locomotor behavior, the

swimming velocity was automatically measured in wild type

zebrafish and morphants at 96 hpf, during cycles of light/darkness.

Both the ATG-MO-Mild and SP-MO-Mild morphants displayed

significantly decreased swimming velocity, compared to wild type

zebrafish (Figure 5A).

In order to assess whether these locomotor defects are

dependent by the dopamine deficiency in the brain (and not by

general developmental delay), we studied the effects of apomor-

Figure 1. Characterization of the zFbxo7 protein in zebrafish. (A) Schematic representation of the zFbxo7 functional domains. The values
underneath each domain indicate the amino acids identity between zFbxo7 and hFBXO7 (isoform1). Ubl: ubiquitin-like domain; FP: FBXO7/ PI31
domain; F-box: F-box motif; PRR: proline rich domain. (B) Western blot analysis of the zFbxo7 protein expression at different developmental stages.
(C) Western blot analysis of zFbxo7 protein expression in different tissues of eight-month-old adult zebrafish. Actin was used as reference protein.(D)
Immunostaining of the zFbxo7 protein in eight-month-old zebrafish brain areas. The zFbxo7 immunoreactivity is shown in brown, while the cell
nuclei are counterstained in blue using hematoxylin. The following areas are shown: olfactory bulb (OB), diencephalon (Di), optic tectum (TeO),
medulla oblongata (MO), habenula (Ha), and cerebellum (C). Scale bars: 100 mm.
doi:10.1371/journal.pone.0048911.g001
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phine, a potent, direct dopamine agonist, also used in the

treatment of PD patients. In order to prevent unwanted effects

of apomorphine on the peripheral (extra-cerebral) dopamine

receptors, we first exposed the animals to domperidone, a

dopamine-receptor peripheral antagonist that does not cross the

blood-brain barrier. Domperidone is also widely used in humans

to prevent the peripheral side effects of apomorphine and other

dopamine agonists (vomiting, hypotension).

We first show that no locomotor effects are detectable after

placing either wild type zebrafish or morphants in water

Figure 2. zFbxo7 knock down results in developmental defects. (A) Representative images of zebrafish wild type and morphants. Injection of
ATG-MO or SP-MO induced a range of phenotypes, which were grouped in mild and severe, including curly tails (black arrowheads), heart edema and
heart malformations (grey arrowheads). (B) Percentages of healthy phenotype, mild phenotype abnormalities, severe phenotype abnormalities and
lethality among uninjected control (WT) and MOs-injected morphants. zFbxo7 knock down results in decreased zFbxo7 protein expression
doi:10.1371/journal.pone.0048911.g002
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containing domperidone alone, at a concentration of up to 3 mM

(Figure S2B and S2C). We then exposed wild type and morphants

to water containing 3 mM domperidone and 3 mM apomorphine.

While no effects were detectable in the wild type animals (Figure

S2A), the swimming defects in the morphants were markedly and

significantly improved, their performances reaching levels similar

to those of the wild type animals (Figure 5B and 5C).

Off-target effects due to MO-induced p53 activation are
not detected

To prevent off-target MOs effects due to activation of p53

expression, a specific p53-targeting MO was co-injected with

zFbxo7-specific MOs (Figure 6A). The frequency of healthy

phenotype, mild phenotype abnormalities, severe phenotype

abnormalities, and lethality, among uninjected controls, single-

injected morphants, and morphants co-injected with p53-targeting

MO, was unchanged (Figure 6B). These results indicate that the

observed phenotypes are not due to off-target effects mediated by

the induction of p53 expression.

Rescue of the phenotypes associated with zFbxo7 MOs
injection

In order to rescue the phenotypes associated to zFbxo7 MOs

injection, human FBXO7 (hFBXO7) mRNA was prepared, and the

quality confirmed by in vitro translation (Figure S1A). The

hFBXO7 protein is ,5 kDa larger than the zFbxo7 protein,

and therefore, these two proteins can be easily distinguished by

Western blot. However, when co-injected together with zFbxo7

MOs, the hFBXO7 mRNA failed to rescue the morphological

phenotypes induced by zFbxo7 MOs (data not shown). The

analysis of the temporal pattern of expression showed strong levels

of the exogenous hFBXO7 protein at 8 hpf, which quickly wore off

and disappeared at 48 hpf (Figure S1B). On the contrary, the levels

of the endogenous zFbxo7 protein were almost undetectable

before 12 hpf, and increased gradually until 72 hpf (Figure 1B).

The discrepancy between the time course of expression of the

exogenous hFBXO7 and the endogenous zFbxo7 protein (which

could be due to the usage of different promoters) is likely the

explanation of the lack of rescuing effects.

Discussion

PARK15 is an autosomal recessive disease, caused by the loss of

function of the proteins encoded by the FBXO7 gene [7], and in

particular, by the loss of the function of the longer FBXO7 isoform

(isoform 1), which localizes in the cell nucleus [10]. However, how

the loss of this function leads to neurodegeneration with massive,

early death of the nigrostriatal dopaminergic neurons remains

unknown. Here, we establish the first zebrafish model of PARK15,

by transient knock down of the zFbxo7 expression using MOs. We

show that two different, non-overlapping zFbxo7 MOs are able to

efficiently knock down the zFbxo7 protein expression, resulting in

developmental defects, abnormalities at the level of the patterning

and number of the brain dopamine neurons, and locomotor

defects. These last defects are dramatically improved by the

dopamine agonist apomorphine.

Tyrosine hydroxylase (Th), the rate-limiting enzyme in the

synthesis of dopamine and other catecholamines, is expressed by

all the catecholaminergic neurons (dopaminergic, noradrenergic

and adrenergic) [13,14]. On the contrary, the dopamine

transporter (Dat) is a specific dopaminergic neuronal marker

[15,16]. In wild type zebrafish, diencephalic clusters of th+/dat+

dopaminergic neurons are present, which project to the ventral

telencephalon, and might be functionally equivalent to human

nigrostriatal or ventral tegmental dopaminergic neurons (Figure 4A

and 4C) [17,18].

Th or Dat staining at the level of mRNA (WISH) or protein

(immunohistochemistry) are widely used to assess the number of

dopaminergic neurons in animal models of PD, including the

zebrafish (reviewed in [11,12]). Zebrafish knock down models have

been previously generated targeting the homologues of other PD-

causing genes, including PARKIN [19,20], PINK1 [21,22,23], DJ-1

[24,25], and LRRK2 [26,27], while the alpha-synuclein gene has no

homologue in zebrafish [28]. Overall, the results of these studies

have not been very consistent, depending in part from the different

knock out strategies and efficiencies. Also, off-target effects were

not entirely excluded in some studies reporting the most severe

phenotypes [21]. Of note, none of the previous models has shown

robust evidence of dopaminergic neuronal loss, together with,

dopamine-dependent behavioral abnormalities. Instead, the

zFbxo7 knock down model described here yields abnormalities

at the level of both patterning and number of the brain dopamine

neurons, as well as dopamine-dependent locomotor defects.

We show that the depletion of zFbxo7 alters the patterning of

the th+/dat+ diencephalic dopaminergic neurons (Figure 4A and

4C), suggesting an important role for the zFbxo7 protein in the

development of the brain dopaminergic systems. A similar

disturbance of dopaminergic neuronal patterning, without neuro-

Figure 3. zFbxo7 knock down results in decreased zFbxo7
protein expression. (A) Western blot of the zFbxo7 protein at 72 hpf
in uninjected control (WT) and MOs-injected morphants which showed
mild or severe phenotype abnormalities. (B) Quantification of the
zFbxo7 protein levels is shown in panel A (Odyssey software). Data were
collected from three independent experiments, P,0.01.
doi:10.1371/journal.pone.0048911.g003
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Figure 4. zFbxo7 knock down results in dopaminergic neuronal cell loss. The brain catecholaminergic neurons were visualized by whole-
mount in situ hybridization using antisense RNA probes specific for tyrosine hydroxylase (th, panel A) or dopamine transporter (dat, panel C). Number
of neurons were counted manually and normalized to the counts in wild type zebrafish (panels B and D). * P,0.01
doi:10.1371/journal.pone.0048911.g004

Figure 5. zFbxo7 knock down results in locomotor defects, which are improved by apomorphine. The movements of WT zebrafish, ATG-
MO-Mild and SP-MO-Mild morphants were recorded during three cycles of 10-minutes light/10-minutes darkness (periods of darkness are shown in
grey). Compared with WT, morphants showed significantly decreased velocity in both light and dark phases (P,0.01, panel A), which were
significantly improved by treatment with apomorphine (P,0.01 in the dark phase, panels B and C). Dom: domperidone. Apo: apomorphine.
doi:10.1371/journal.pone.0048911.g005
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Figure 6. Off-target effects due to MO-induced p53 activation are not detected. (A) Representative images of zebrafish embryos treated
with single MO injection (ATG-MO, SP-MO or P53-MO) or co-injection (ATG-MO/P53-MO or SP-MO/P53-MO). (B) Percentage of healthy phenotype,
mild phenotype abnormalities, severe phenotype abnormalities and lethality among uninjected control (WT), single injected morphants and co-
injected morphants.
doi:10.1371/journal.pone.0048911.g006
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nal loss, has been reported after the knock down of the zebrafish

homologue of human PINK1 [23].

We also show that the number of th+ neurons is significantly

reduced (by 40%), in the morphants with most severe phenotypes,

and using the SP-MO morpholinos (Figure 4A and 4B). Similar

loss of th+ neurons (,40%) was previously reported in one knock

down model of the zebrafish PINK1 homologue [21], though off-

target effects were not excluded, and subsequent studies did not

report that phenotype [22,23,29]. A milder (,20%) loss of th+

neurons was reported in one knock down model of the zebrafish

PARKIN homologue, in absence of behavioral abnormalities [19],

while neither loss of th+ neurons nor behavioral phenotypes were

reported in a second study using a different knock down strategy

for the PARKIN zebrafish homologue [20]. Loss of th+ neurons was

not reported in two knock down studies of the zebrafish DJ-1

homologue [24,25], while they were detected in only one of two

knock down studies of the zebrafish LRRK2 homologue [26,27].

Of note, the dat expression was not investigated in most of these

previous studies, which only used th expression to assess the

integrity of the dopaminergic neurons. Intriguingly, we found that

the number of dat+ neurons was reduced much more than the

number of the th+ neurons, in both the ATG- and SP-MOs

morphants, and even more dramatically in the morphants with

more severe phenotypes (Figure 4C and 4D). This discrepancy

between the reduction in the th+ and dat+ neurons might indicate,

in part, a selective loss of dopaminergic neurons, within the larger

compartment of the catecholaminergic neurons. However, this

pattern more likely indicates the presence of surviving th+

dopaminergic neurons with down-regulated dat expression. The

same pattern (reduced DAT in preserved DA neurons) is seen in

vivo in humans with genetic forms of PD by PET imaging in the

earlier stages of dopaminergic neuronal degeneration. This might

represent a compensatory neuronal reaction that maintains

sufficient synaptic dopamine levels by down-regulating the DAT-

mediated presynaptic reuptake of the neurotransmitter [30].

Besides the dopaminergic neurons, we cannot exclude that other

neuronal populations were affected in the brain or the spinal cord

of these morphants, as this was not specifically addressed here.

As a behavioral correlate, there are marked locomotor defects in

the morphants injected with both zFbxo7 MOs, and more

importantly, these defects are dramatically improved by a direct,

centrally-acting dopamine agonist, apomorphine. Of note, we

prevented the effects of apomorphine on the peripheral dopamine

receptors by co-administering domperidone, a dopamine-receptor

antagonist that does not cross the blood-brain barrier. In these

conditions, the observed effects are due to the action of

apomorphine on dopamine receptors within the brain. The

dopamine-dependence of the locomotor defects (bradykinesia) is a

hallmark of PARK15 and PD in general, and it indicates the

presence of presynaptic lesions at the level of the nigrostriatal

dopaminergic neurons, in the context of preserved post-synaptic

dopamine receptor and downstream brain circuitry. This hallmark

feature is thus reproduced in the zebrafish fbxo7 model.

The specificity of MO-mediated gene knock down is an

important issue in zebrafish models. In this study, we used two

non-overlapping MOs, targeting the ATG start codon and the

intron2/exon2 splice site of zFbxo7, respectively. Both of them

resulted in efficient zFbxo7 depletion (measured by western blot),

and qualitatively similar neuronal phenotypes. This is the first

evidence that the effects are due to the specific knock down of the

zFbxo7 protein. Furthermore, the degree of zFbxo7 protein

depletion correlated with the severity of embryonic development

defects, of neuronal abnormalities and of the locomotor pheno-

types. This is a second argument in support that the observed

phenotypes are specifically due to the depletion of the zFbxo7

protein. It is well-known that the injection of MO might induce

apoptosis by activating the expression of the p53 transcription

(general MO toxicity) [31,32]. Therefore, we also excluded that

the observed phenotypes were caused by the activation of p53, by

co-injecting p53-targeting MOs.

Another way to support specificity of effects would be rescuing

these phenotypes by using the mRNA of the specific gene of

interest. Unfortunately, here hFBXO7 failed to rescue the

morphological phenotypes induced by zFbxo7 MOs. However, a

detailed analysis of the temporal pattern of expression disclosed a

clear discrepancy between the time course of expression of the

exogenous hFBXO7 and the endogenous zFbxo7 protein.

Moreover, it is very difficult to reproduce the cell-specific

expression pattern of endogenous proteins by overexpressing

exogenous proteins. The timing and localization of Fbxo7

expression might therefore be critical to its function, and the

early and short-lasting expression of the hFBXO7 mRNA is likely

the explanation of the lack of rescuing effects. Lack of rescue of

truly-specific effects is a well-known phenomenon in zebrafish

MO-mediated modeling [11,12].

We acknowledge a more general caveat in modeling late-onset

human neurodegenerative diseases, such as PD, by transient gene

knock down during the embryonic development of a model

organism. Indeed, besides a clear PD-related phenotype, our

zFbxo7 morphants also displayed overt developmental abnormal-

ities outside the brain, including heart malformations and curly

tails that are not features of the human pathology. PD manifests as

a post-developmental phenotype, even in the early-onset cases like

those related to FBXO7 deficiency.

In conclusion, this novel vertebrate model reproduces patho-

logic and behavioral hallmarks of human parkinsonism (dopami-

nergic neuronal loss and dopamine-dependent bradykinesia),

representing therefore a valid tool for investigating the mecha-

nisms leading to selective dopaminergic neuronal death, screening

for modifier genes or libraries of potential therapeutic compounds.

Materials and Methods

Zebrafish maintenance
The use of zebrafish embryos for this study was approved by the

Institutional Review Board for experimental animals of the

Erasmus MC, Rotterdam. All procedures and conditions were in

accordance with Dutch animal welfare legislation. Wild type tupfel

long fin zebrafish were used for all experiments. Embryos were

collected after natural spawning and raised in embryo medium

containing methylene blue at 28uC under standard conditions

[33].

Genetic analysis of the zebrafish FBXO7 orthologue
The sequences of the zFbxo7 transcript and protein (EN-

SDART00000082132, ENSDARP00000076569) were retrieved

from Ensembl, and the zFbxo7 protein was blasted to the human

FBXO7 proteins, isoform 1 (ENSP00000266087) and isoform 2

(ENSP00000371490). Total RNA was isolated from 72 hpf tupfel

long fin zebrafish as described before [10], and complementary

DNA was synthesized using the iScriptTM cDNA Synthesis Kit

(Bio-Rad) according to the manufacturer’s instructions. The

coding region of zFbxo7 was amplified and sequenced (PCR

primers are shown in the Supplementary Material, Table S1), and

aligned to the sequence deposited in Ensembl (EN-

SDART00000082132).
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Western blot
Zebrafish embryos at different developmental stages, as well as

different organs of eight-month-old adult zebrafish were collected,

and the proteins extracted by homogenization with buffer

containing 10 mM HEPES, 300 mM KCl, 3 mM MgCl2?6H2O,

100 mM CaCl2?2H2O, 0.45% Triton X-100 and 0.05% Tween-

20, pH 7.6. Thirty mg of total protein were separated in 6%–12%

CriterionTM XT 4–12% Bis-Tris Gel (Bio-Rad), and blotted with

nitrocellulose membrane as previously described [10]. The

primary antibodies used were: mouse polyclonal antibody raised

against full-length human FBXO7 (Abnova, 1/3000), and mouse

monoclonal anti-b-Actin (Sigma, 1/10000). After incubation with

secondary antibody, the membrane was scanned with the Odyssey

TM Infrared Imager (Li-COR Biosciences). The integrated

intensities of the zFbxo7 protein bands were quantified by the

Odyssey software, using Actin as loading control.

Immunohistochemistry
The brain of eight-month-old zebrafish was dissected and fixed

in 4% phosphate-buffered paraformaldehyde (PFA) overnight.

Paraffin embedded sections (6 mm) were prepared for immuno-

staining. Briefly, dewaxed sections were pretreated for antigen

retrieval by microwave heating in 0.1 M sodium citrate buffer (pH

6). Immunostaining was performed with mouse polyclonal

antibody raised against full-length human FBXO7 (Abnova, 1/

40) followed by indirect immunoperoxidase labeling and hema-

toxylin counterstain.

Morpholino and mRNA microinjections
Anti-sense morpholinos (MOs) were purchased from Gene

Tools LLC (Philomath OR). Two MOs were designed to target

zFbxo7: one was targeting the zFbxo7 translation initiation site

(ATG-MO, 59-GAG CTT CAT TCT GTG CTT CCA GAA A-

39), and another for the zFbxo7 exon2/intron2 splice site (SP-MO,

59-GAT GAA GGT GCT CAG ACT GAC CGG A-39). A

previously described MO targeting the translation initiation site of

p53 (P53-MO, 59-GCG CCA TTG CTT TGC AAG AAT TG-

39) was also used [32].

All MOs were dissolved in double distilled H2O and diluted

with Danieau solution (58 mM NaCl, 0.7 mM KCl, 0.4 mM

MgSO4, 0.6 mM Ca(NO3)2, 5.0 mM HEPES pH 7.6), containing

1% phenol red as indicator. The amounts of ATG-MO and SP-

MO were optimized for maximal knock-down efficiency and

minimal toxicity (data not shown), and 4 ng of ATG-MO and

8 ng of SP-MO were selected for the following experiments. These

MO were injected into the embryos yolk at one-cell or two-cell

stage to knock down the expression of zFbxo7. In separate

experiments, the P53-MO was co-injected with zFbxo7-specific

MO (6 ng with ATG-MO or 8 ng with SP-MO), to prevent off-

target effects due to activation of p53 expression.

Full length human FBXO7 cDNA (hFBXO7) amplified by RT-

PCR from peripheral mononuclear blood cells [10] was ligated

into the pCR2.1-TOPO vector (Invitrogen), and subcloned at the

site of EcoRI in pCS2+ vector [34]. The fidelity of hFBXO7-pCS2

was verified by direct sequencing. Using NotI-linearized hFBXO7-

pCS2 as template, hFBXO7 mRNA was generated with the

mMessage mMachine SP6 kit (Ambion). To test the quality of

hFBXO7 mRNA, the in vitro translation was performed using

Rabbit Reticulocyte Lysate System (Promega). For rescue exper-

iments, hFBXO7 mRNA was co-injected with zFbxo7 MOs at one

cell stage. In all the experiments, the morphology of morphants

was observed at 24, 48, and 72 hpf by two investigators in blind

conditions.

Whole mount in situ hybridization
Briefly, a digoxigenin-labelled antisense RNA probe specific for

the tyrosine hydroxylase (th) transcript was synthesized from linearized

pCRII-TOPO-th plasmid and transcribed by T7 RNA polymerase

(Roche). The plasmid containing the dopamine transporter (dat, slc6a3)

transcript was a kind gift from Dr. Edward A. Burton, Department

of Neurology, University of Pittsburgh School of Medicine,

Pittsburgh, PA, (USA) [35], and the corresponding RNA probe

was generated by T3 RNA polymerase (Roche). Embryos were

fixed overnight at 72 hpf in 4% PFA, and bleached with 10%

H2O2 to remove pigmentation. Embryos were then transferred to

100% methanol for dehydration at 220uC for at least 24 h and

then the hybridization procedure was followed as previous

described [36]. After staining with NBT/BCIP solution (Roche),

labeled embryos were washed with PBST (0.1% Tween 20 in PBS)

in dark and mounted with 80% glycerol. The images of th+ and

dat+ neurons were acquired and quantified by two investigators in

blind fashion, under an Olympus microscope. The results are

shown as percentages of the labeled neurons present in uninjected

wild type embryos, staged and treated in parallel with the zFbxo7

knock-down morphants.

Locomotor activity studies
For behavioral studies, wild type and morphant larvae were

harvested at 96 hpf, and placed in 96-well plates (one larva per

well) containing 150 ml of embryo medium at 28uC. The larvae

were allowed to acclimatize for 15 min before starting the

behavioral monitoring. DanioVision (Noldus) was used for

tracking movement during three cycles of 10-min white light-on

(light) and 10-min light-off (darkness). All digital tracks were

analyzed by Ethovision XT software (Noldus) for velocity, and a

minimum movement distance of 0.2-mm was used to filter out

system noise.

For the assessment of the dopamine-dependence of the

locomotor defects, morphants were first kept for one hour in

water containing 3 mM domperidone, an orally active compound

that blocks the peripheral dopamine receptors, but does not cross

the blood-brain barrier. At this concentration, domperidone

induced no behavioral effects in wild type or in morphants. After

the pre-treatment with domperidone, the larvae were placed in

water containing 3 mM apomorphine (a potent dopamine receptor

full agonist), and the swimming activity was tracked during five

cycles of light-on/light-off.

Data analysis
Quantitative data are expressed as means 6 SEM, and each

treatment group was normalized to the wild type control group.

All experiments were done in triplicates, and the statistical analyses

were performed using one-way ANOVA or T-test, as appropriate,

with the SPSS package. The data were considered statistically

significant at P,0.01.

Supporting Information

Figure S1. Expression of endogenous zFbxo7 and exog-
enous hFBXO7 occurs in different time points during the
zebrafish development.(A) Western blot analysis after in vitro

protein translation of the hFBXO7 mRNA. A band of the expected

size of the hFbxo7 protein was detected, validating the hFBXO7

mRNA as a rescuing template mRNA. An empty lane (Control)

shows the reaction product after omitting the hFBXO7 mRNA

template. (B) Time course of the expression of exogenous

hFBXO7 in vivo in wild type embryos.The hFBXO7 mRNA was

injected into one-cell stage embryos, and the expression of
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hFBXO7 was probed at 8, 24 and 48 hpf by Western blot. The

expression of hFBXO7 was already markedly lower at 24 hpf, and

was undetectable at 48 hpf.(C) The expression of exogenous

hFBXO7 and endogenous zFbxo7 in vivo in zebrafish embryos

with or without co-injection of SP-MO. The hFBXO7 mRNA

and/or SP-MO were injected into one-cell stage embryos, and the

expression of proteins was probed at 8 and 72 hpf by Western blot.

The expression of the endogenous zFbxo7 was maximal at 72 hpf,

when the exogenous hFBXO7 was undetectable.

(TIF)

Figure S2. Locomotor behavior is not affected by
domperidone.The automated analysis of locomotion shows that

the treatment with domperidone together with apomorphine (A)

or domperidone alone (B) induced no detectable effects on the wild

type zebrafish. Furthermore, domperidone alone induced no

detectable locomotor effects in the ATG-MO-injected morphants

(C). Dom: domperidone. Apo: apomorphine.

(TIF)

Table S1. PCR primers used for the amplification of the zFbxo7

cDNA.

(PDF)
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