18 research outputs found

    Accurate prediction of core-level spectra of radicals at density functional theory cost via square gradient minimization and recoupling of mixed configurations

    Full text link
    State-specific orbital optimized approaches are more accurate at predicting core-level spectra than traditional linear-response protocols, but their utility had been restricted on account of the risk of `variational collapse' down to the ground state. We employ the recently developed square gradient minimization (SGM, J. Chem. Theory Comput. 16, 1699-1710, 2020) algorithm to reliably avoid variational collapse and study the effectiveness of orbital optimized density functional theory (DFT) at predicting second period element 1s core-level spectra of open-shell systems. Several density functionals (including SCAN, B3LYP and ω\omegaB97X-D3) are found to predict excitation energies from the core to singly occupied levels to high accuracy (0.3\le 0.3 eV RMS error), against available experimental data. Higher excited states are however more challenging by virtue of being intrinsically multiconfigurational. We thus present a CI inspired route to self-consistently recouple single determinant mixed configurations obtained from DFT, in order to obtain approximate doublet states. This recoupling scheme is used to predict the C K-edge spectra of the allyl radical, the O K-edge spectra of CO+^+ and the N K-edge of NO2_2 to high accuracy relative to experiment, indicating substantial promise in using this approach for computation of core-level spectra for doublet species (vs more traditional time dependent DFT, EOM-CCSD or using unrecoupled mixed configurations). We also present general guidelines for computing core-excited states from orbital optimized DFT.Comment: Added more dat

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design
    corecore