1,242 research outputs found

    WHAM Observations of H-alpha Emission from High Velocity Clouds in the M, A, and C Complexes

    Full text link
    The first observations of the recently completed Wisconsin H-Alpha Mapper (WHAM) facility include a study of emission lines from high velocity clouds in the M, A, and C complexes, with most of the observations on the M I cloud. We present results including clear detections of H-alpha emission from all three complexes with intensities ranging from 0.06 R to 0.20 R. In every observed direction where there is significant high velocity H I gas seen in the 21 cm line we have found associated ionized hydrogen emitting the H-alpha line. The velocities of the H-alpha and 21 cm emission are well correlated in every case except one, but the intensities are not correlated. There is some evidence that the ionized gas producing the H-alpha emission envelopes the 21 cm emitting neutral gas but the H-alpha "halo", if present, is not large. If the H-alpha emission arises from the photoionization of the H I clouds, then the implied Lyman continuum flux F_{LC} at the location of the clouds ranges from 1.3 to 4.2 x 10^5 photons cm^{-2} s^{-1}. If, on the other hand, the ionization is due to a shock arising from the collision of the high-velocity gas with an ambient medium in the halo, then the density of the pre-shocked gas can be constrained. We have also detected the [S II] 6716 angstrom line from the M I cloud and have evidence that the [S II] to H-alpha ratio varies with location on the cloud.Comment: 32 pages, 18 figures, to appear in ApJ (Sept. 10, 1998

    A Model for the Moving `Wisps' in the Crab Nebula

    Get PDF
    I propose that the moving `wisps' near the center of the Crab Nebula result from nonlinear Kelvin-Helmholtz instabilities in the equatorial plane of the shocked pulsar wind. Recent observations suggest that the wisps trace out circular wavefronts in this plane, expanding radially at speeds approximately less than c/3. Instabilities could develop if there is sufficient velocity shear between a faster-moving equatorial zone and a slower moving shocked pulsar wind at higher latitudes. The development of shear could be related to the existence of a neutral sheet -- with weak magnetic field -- in the equatorial zone, and could also be related to a recent suggestion by Begelman that the magnetic field in the Crab pulsar wind is much stronger than had been thought. I show that plausible conditions could lead to the growth of instabilities at the radii and speeds observed, and that their nonlinear development could lead to the appearance of sharp wisplike features.Comment: 7 pages; 3 postscript figures; LaTex, uses emulateapj.sty; to Appear in the Astrophysical Journal, Feb. 20, 1999, Vol. 51

    The Radial Extent and Warp of the Ionized Galactic Disk. II. A Likelihood Analysis of Radio-Wave Scattering Toward the Anticenter

    Full text link
    We use radio-wave scattering data to constrain the distribution of ionized gas in the outer Galaxy. Like previous models, our model for the H II disk includes parameters for the radial scale length and scale height of the H II, but we allow the H II disk to warp and flare. Our model also includes the Perseus arm. We use a likelihood analysis on 11 extragalactic sources and 7 pulsars. Scattering in the Perseus arm is no more than 60% of the level contributed by spiral arms in the inner Galaxy, equivalent to a 1 GHz scattering diameter of 1.5 mas. Our analysis favors an unwarped, nonflaring disk with a 1 kpc scale height, though this may reflect the non-uniform and coarse coverage provided by the available data. The lack of a warp indicates that VLBI observations near 1 GHz with an orbiting station having baseline lengths of a few Earth diameters will not be affected by interstellar scattering at Galactic latitudes |b| ~ 15 degrees. The radial scale length is 15--20 kpc, but the data cannot distinguish between a gradual decrease in the electron density and a truncated distribution. We favor a truncated one, because we associate the scattering with massive star formation, which is also truncated near 20 kpc. The distribution of electron density turbulence decreases more rapidly with Galactocentric distance than does the hydrogen distribution. Alternate ionizing and turbulent agents---the intergalactic ionizing flux and satellite galaxies passing through the disk---do not contribute significantly to scattering. We cannot exclude the possibility that a largely ionized, but quiescent disk extends to >~ 100 kpc, similar to that for some Ly-alpha absorbers.Comment: 34 pages, LaTeX2e with AASTeX aaspp4 macro, 9 figures in 9 PostScript files, accepted for publication in Ap

    Faint Radio Sources and Star Formation History

    Full text link
    Faint extragalactic radio sources provide important information about the global history of star formation. Sensitive radio observations of the Hubble Deep Field and other fields have found that sub-mJy radio sources are predominantly associated with star formation activity rather than AGN. Radio observations of star forming galaxies have the advantage of being independent of extinction by dust. We use the FIR-radio correlation to compare the radio and FIR backgrounds, and make several conclusions about the star forming galaxies producing the FIR background. We then use the redshift distribution of faint radio sources to determine the evolution of the radio luminosity function, and thus estimate the star formation density as a function of redshift.Comment: 12 pages, 9 figures, latex using texas.sty, to appear in the CD-ROM Proceedings of the 19th Texas Symposium on Relativistic Astrophysics and Cosmology, held in Paris, France, Dec. 14-18, 1998. Eds.: J. Paul, T. Montmerle, and E. Aubourg (CEA Saclay). No changes to paper, just updated publication info in this commen

    Lyman-Alpha Absorption Systems and the Nearby Galaxy Distribution

    Full text link
    We study the galaxy number density (smoothed on a 5h^{-1} Mpc scale) around 18 low-redshift Lyman-alpha absorbers previously observed with HST. The absorbers lie in the foregrounds of Mrk 335, Mrk 421, Mrk 501, I Zw 1, and 3C 273, all within regions where there are now complete redshift surveys to m_{Zw}=15.5. We construct a smoothed galaxy number density field from the redshift survey data and determine the distribution of densities at the Lyman-alpha absorber locations. We also find the distribution of galaxy number density for a variety of test samples: all galaxy locations within the Center for Astrophysics Redshift Survey (CfA2), CfA2 galaxy locations along randomly selected lines of sight (LOS), and randomly chosen redshifts along random LOS. The Lyman-alpha absorbers are present in dense regions of the survey, but occur far more frequently in underdense regions than do typical luminous galaxies. The distribution of smoothed galaxy density around the Lyman-alpha absorbers is inconsistent at the 4-sigma level with the density distribution around survey galaxies. It is highly consistent with a density distribution at randomly chosen redshifts along random LOS. This supports earlier evidence that the nearby, low column density (log N_{HI} < 14) Lyman-alpha forest systems are spatially distributed at random; they are not well correlated with the local large-scale structure.Comment: Accepted for publication in ApJ, 38 pages including 10 figure

    Energy Dissipation in Interstellar Cloud Collisions

    Get PDF
    We present a study of the kinetic energy dissipation in interstellar cloud collisions. The main aim is to understand the dependence of the elasticity (defined as the ratio of the final to the initial kinetic energy of the clouds) on the velocity and mass ratio of the colliding clouds, magnetic field strength, and gas metallicity for head-on collisions. The problem has been studied both analytically and via numerical simulations. We have derived handy analytical relationships that well approximate the analogous numerical results. The main findings of this work are: (i) the kinetic energy dissipation in cloud collisions is minimum (i.e. the collision elasticity is maximum) for a cloud relative velocity vr30kms1v_r \simeq 30 km s^{-1}; (ii) the above minimum value is proportional ZLc2Z L_c^2, where ZZ is the metallicity and LcL_c is the cloud size: the larger is ZLc2Z L_c^2 the more dissipative (i.e. inelastic) the collision will be; (iii) in general, we find that the energy dissipation decreases when the magnetic field strength, and mass ratio of the clouds are increased and the metallicity is decreased, respectively. We briefly discuss the relevance of this study to the global structure of the interstellar medium and to galaxy formation and evolution.Comment: 16 pages, aasms LaTeX, 7 figures. ApJ, accepte

    The VLA Survey of the Chandra Deep Field South: I. Overview of the Radio Data

    Full text link
    We report 20 and 6 cm VLA deep observations of the CDF-S including the Extended CDF-S. We discuss the radio properties of 266 cataloged radio sources, of which 198 are above a 20 cm completeness level reaching down to 43 microJy at the center of the field. Survey observations made at 6 cm over a more limited region covers the original CDF-S to a comparable level of sensitivity as the 20 cm observations. Of 266 cataloged radio sources, 52 have X-ray counterparts in the CDF-S and a further 37 in the E-CDF-S area not covered by the 1 Megasecond exposure. Using a wide range of material, we have found optical or infrared counterparts for 254 radio sources, of which 186 have either spectroscopic or photometric redshifts (Paper II). Three radio sources have no apparent counterpart at any other wavelength. Measurements of the 20 cm radio flux density at the position of each CDF-S X-ray source detected a further 30 radio sources above a conservative 3-sigma detection limit. X-ray and sub-mm observations have been traditionally used as a measure of AGN and star formation activity, respectively. These new observations probe the faint end of both the star formation and radio galaxy/AGN population, as well as the connection between the formation and evolution of stars and SMBHs. Both of the corresponding gravitational and nuclear fusion driven energy sources can lead to radio synchrotron emission. AGN and radio galaxies dominate at high flux densities. Although emission from star formation becomes more prominent at the microjansky levels reached by deep radio surveys, even for the weakest sources, we still find an apparent significant contribution from low luminosity AGN as well as from star formation.Comment: Accpted for publication in the Astrophysical Journal supplements with 3 tables and 18 figure

    Evolution of Structure in the Intergalactic Medium and the Nature of the Ly-alpha Forest

    Full text link
    We have performed a detailed statistical study of the evolution of structure in a photoionized intergalactic medium (IGM) using analytical simulations to extend the calculation into the mildly non-linear density regime found to prevail at z = 3. Our work is based on a simple fundamental conjecture: that the probability distribution function of the density of baryonic diffuse matter in the universe is described by a lognormal (LN) random field. The LN field has several attractive features and follows plausibly from the assumption of initial linear Gaussian density and velocity fluctuations at arbitrarily early times. Starting with a suitably normalized power spectrum of primordial fluc- tuations in a universe dominated by cold dark matter (CDM), we compute the behavior of the baryonic matter, which moves slowly toward minima in the dark matter potential on scales larger than the Jeans length. We have computed two models that succeed in matching observations. One is a non-standard CDM model with Omega=1, h=0.5 and \Gamma=0.3, and the other is a low density flat model with a cosmological constant(LCDM), with Omega=0.4, Omega_Lambda=0.6 and h=.65. In both models, the variance of the density distribution function grows with time, reaching unity at about z=4, where the simulation yields spectra that closely resemble the Ly-alpha forest absorption seen in the spectra of high z quasars. The calculations also successfully predict the observed properties of the Ly-alpha forest clouds and their evolution from z=4 down to at least z=2, assuming a constant intensity for the metagalactic UV background over this redshift range. However, in our model the forest is not due to discrete clouds, but rather to fluctuations in a continuous intergalactic medium. (This is an abreviated abstract; the complete abstract is included with the manuscript.)Comment: Wrong Fig. 10 is corrected. Our custom made postscript is available at ftp://hut4.pha.jhu.edu/incoming/igm, or contact Arthur Davidsen ([email protected]) for nice hardcopies; accepted for publication in Ap

    Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    Full text link
    The nitrogen-vacancy (N-V) center in diamond is a promising atomic-scale system for solid-state quantum information processing. Its spin-dependent photoluminescence has enabled sensitive measurements on single N-V centers, such as: electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby 13C nuclear spin. Furthermore, room temperature spin coherence times as long as 58 microseconds have been reported for N-V center ensembles. Here, we have developed an angle-resolved magneto-photoluminescence microscopy apparatus to investigate the anisotropic electron spin interactions of single N-V centers at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighboring dark nitrogen spins that are not otherwise detected by photoluminescence. The latter results demonstrate a means of investigating small numbers of dark spins via a single bright spin under ambient conditions.Comment: 13 pages, 4 figure
    corecore