6 research outputs found

    Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer.

    No full text
    CONTEXT: Abiraterone acetate is a small-molecule cytochrome P450 17A1 (CYP17A1) inhibitor that is active in castration-resistant prostate cancer. OBJECTIVE: Our objective was to determine the impact of abiraterone with and without dexamethasone treatment on in vivo steroidogenesis. DESIGN AND METHODS: We treated 42 castrate, castration-resistant prostate cancer patients with continuous, daily abiraterone acetate and prospectively collected blood and urine before and during abiraterone treatment and after addition of dexamethasone 0.5 mg daily. RESULTS: Treatment with single-agent abiraterone acetate was associated with accumulation of steroids with mineralocorticoid properties upstream of CYP17A1. This resulted in side effects, including hypertension, hypokalemia, and fluid overload, in 38 of 42 patients that were generally treated effectively with eplerenone. Importantly, serum and urinary androgens were suppressed by more than 90% from baseline. Urinary metabolites of 17-hydroxypregnenolone and 17-hydroxyprogesterone downstream of 17α-hydroxylase remained unchanged. However, 3α5α-17-hydroxypregnanolone, which can be converted via the backdoor pathway toward 5α-dihydrotestosterone, increased significantly and correlated with levels of the major 5α-dihydrotestosterone metabolite androsterone. In contrast, urinary metabolites of 11-deoxycortisol and active glucocorticoids declined significantly. Addition of dexamethasone to abiraterone acetate significantly suppressed ACTH and endogenous steroids, including 3α5α-17-hydroxypregnanolone. CONCLUSION: CYP17A1 inhibition with abiraterone acetate is characterized by significant suppression of androgen and cortisol synthesis. The latter is associated with a rise in ACTH that causes raised mineralocorticoids, leading to side effects and incomplete 17α-hydroxylase inhibition. Concomitant inhibition of 17,20-lyase results in diversion of 17-hydroxyprogesterone metabolites toward androgen synthesis via the backdoor pathway. Addition of dexamethasone reverses toxicity and could further suppress androgens by preventing a rise in substrates of backdoor androgen synthesis

    Significant and Sustained Antitumor Activity in Post-Docetaxel, Castration-Resistant Prostate Cancer With the CYP17 Inhibitor Abiraterone Acetate

    Get PDF
    Purpose: The principal objective of this trial was to evaluate the antitumor activity of abiraterone acetate, an oral, specific, irreversible inhibitor of CYP17 in docetaxel-treated patients with castration-resistant prostate cancer (CRPC). Patients and Methods: In this multicenter, two-stage, phase II study, abiraterone acetate 1,000 mg was administered once daily continuously. The primary end point was achievement of a prostate-specific antigen (PSA) decline of ≥ 50% in at least seven of 35 patients. Per an attained phase II design, more than 35 patients could be enrolled if the primary end point was met. Secondary objectives included: PSA declines of ≥ 30% and ≥ 90%; rate of RECIST (Response Evaluation Criteria in Solid Tumors) responses and duration on study; time to PSA progression; safety and tolerability; and circulating tumor cell (CTC) enumeration. Results: Docetaxel-treated patients with CRPC (N = 47) were enrolled. PSA declines of ≥ 30%, ≥ 50% and ≥ 90% were seen in 68% (32 of 47), 51% (24 of 47), and 15% (seven of 47) of patients, respectively. Partial responses (by RECIST) were reported in eight (27%) of 30 patients with measurable disease. Median time to PSA progression was 169 days (95% CI, 113 to 281 days). The median number of weeks on study was 24, and 12 (25.5%) of 47 patients remained on study ≥ 48 weeks. CTCs were enumerated in 34 patients; 27 (79%) of 34 patients had at least five CTCs at baseline. Eleven (41%) of 27 patients had a decline from at least five to less than 5 CTCs, and 18 (67%) of 27 had a ≥ 30% decline in CTCs after starting treatment with abiraterone acetate. Abiraterone acetate was well tolerated. Conclusion: Abiraterone acetate has significant antitumor activity in post-docetaxel patients with CRPC. Randomized, phase III trials of abiraterone acetate are underway to define the future role of this agent

    Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer

    No full text
    Hormone-driven expression of the ERG oncogene after fusion with TMPRSS2 occurs in 30% to 70% of therapy-naive prostate cancers. Its relevance in castration-resistant prostate cancer (CRPC) remains controversial as ERG is not expressed in some TMPRSS2-ERG androgen-independent xenograft models. However, unlike these models, CRPC patients have an increasing prostate-specific antigen, indicating active androgen receptor signaling. Here, we collected blood every month from 89 patients (54 chemotherapy-naive patients and 35 docetaxel-treated patients) treated in phase I/phase II clinical trials of an orally available, highly specific CYP17 inhibitor, abiraterone acetate, that ablates the synthesis of androgens and estrogens that drive TMPRSS2-ERG fusions. We isolated circulating tumor cells (CTC) by anti-epithelial cell adhesion molecule immunomagnetic selection followed by cytokeratin and CD45 immunofluorescence and 4',6-diamidino-2-phenylindole staining. We used multicolor fluorescence in situ hybridization to show that CRPC CTCs, metastases, and prostate tissue invariably had the same ERG gene status as therapy-naive tumors (n=31). We then used quantitative reverse transcription-PCR to show that ERG expression was maintained in CRPC. We also observed homogeneity in ERG gene rearrangement status in CTCs (n=48) in contrast to significant heterogeneity of AR copy number gain and PTEN loss, suggesting that rearrangement of ERG may be an earlier event in prostate carcinogenesis. We finally report a significant association between ERG rearrangements in therapy-naive tumors, CRPCs, and CTCs and magnitude of prostate-specific antigen decline (P=0.007) in CRPC patients treated with abiraterone acetate. These data confirm that CTCs are malignant in origin and indicate that hormone-regulated expression of ERG persists in CRPC
    corecore