14 research outputs found

    Design and statistics of pharmacokinetic drug-drug, herb-drug, and food-drug interaction studies in oncology patients

    Get PDF
    Polypharmacy is becoming increasingly prevalent in society. Patients with polypharmacy are at greater risk for drug-drug interactions, which can influence the efficacy of treatment. Especially, in oncology this is a concern since neoplasms are increasing prevalent with age, as well as polypharmacy is. Besides drug-drug interactions, also herb-drug and food-drug interactions could be present. Knowledge of these interactions is of great importance for safe and effective anti-cancer treatment, because the therapeutic window of most of these oncologic drugs are small. To study pharmacokinetic interaction effects, a cross-over pharmacokinetic study is a widely used, efficient and scientifically robust design. Yet, several aspects need to be considered when carrying out an interaction study. This includes the knowledge of the advantages and disadvantages of a cross-over design. Furthermore, determination of the end point and research question of interest, calculation of the required sample size, analysis of the generated data with a robust statistical plan and consideration of the logtransformation for some pharmacokinetic parameters are important aspects to consider. Even though some guidelines exist regarding these key issues, no clear overview exists. In this article an overview of these aspects is provided and their effect is discussed

    Influence of Cow’s Milk and Esomeprazole on the Absorption of Erlotinib: A Randomized, Crossover Pharmacokinetic Study in Lung Cancer Patients

    Get PDF
    Introduction: Erlotinib’s gastrointestinal solubility and absorption are decreased by proton pump inhibitors (PPIs). Since erlotinib is a lipophilic drug, we hypothesized that concomitant intake with the fatty beverage milk may be a feasible way to increase erlotinib uptake. We performed a two-period, randomized, crossover study to investigate the influence of cow’s milk with 3.9% fat on the exposure of erlotinib with and without the PPI esomeprazole in patients with non-small cell lung cancer (NSCLC). The effect of esomeprazole was studied in an additional intrapatient comparison. Method: Pharmacokinetic sampling was performed on days 7 and 14 during 24 consecutive hours. During the 7 days prior to pharmacokinetic sampling, erlotinib was taken daily with 250 mL of either water or milk. In the PPI arm, esomeprazole (40 mg once daily 3 h prior to erlotinib) was taken for 3 days. Results: Erlotinib area under the curve from time zero to 24 h (AUC24) did not significantly change when administered with milk, compared with water, in both non-PPI users (n = 14; − 3%; 95% confidence interval [CI] − 12 to 8%; p = 0.57) and patients who used esomeprazole (n = 15; 0%; 95% CI − 15 to 17%; p = 0.95). Esomeprazole decreased erlotinib AUC24 by 47% (n = 9; 95% CI − 57 to − 34%; p < 0.001) and Cmax by 56% (95% CI − 64 to − 46%; p < 0.001). No differences in toxicities were observed between milk and water. Conclusion: Milk with 3.9% fat has no effect on the exposure to erlotinib in NSCLC patients, independent of PPI use. The combination with milk is safe and well tolerated. Concomitant esomeprazole treatment strongly decreased both erlotinib AUC24 and Cmax and should be avoided if possible

    Influence of Food With Different Fat Concentrations on Alectinib Exposure: A Randomized Crossover Pharmacokinetic Trial

    No full text
    BACKGROUND: Alectinib is the keystone treatment in advanced anaplastic lymphoma kinase-positive (ALK+) non-small cell lung cancer (NSCLC). An exposure-response threshold of 435 ng/mL has recently been established, albeit 37% of patients do not reach this threshold. Alectinib is orally administered, and absorption is largely influenced by food. Hence, further investigation into this relationship is needed to optimize its bioavailability. PATIENTS AND METHODS: In this randomized 3-period crossover clinical study in ALK+ NSCLC, alectinib exposure was compared among patients with different diets. Every 7 days, the first alectinib dose was taken with either a continental breakfast, 250-g of low-fat yogurt, or a self-chosen lunch, and the second dose was taken with a self-chosen dinner. Sampling for alectinib exposure (Ctrough) was performed at day 8, just prior to alectinib intake, and the relative difference in Ctrough was compared. RESULTS: In 20 evaluable patients, the mean Ctrough was 14% (95% CI, -23% to -5%; P=.009) and 20% (95% CI, -25% to -14%; P<.001) lower when taken with low-fat yogurt compared with a continental breakfast and a self-chosen lunch, respectively. Administration with a self-chosen lunch did not change exposure compared with a continental breakfast (+7%; 95% CI, -2% to +17%; P=.243). In the low-fat yogurt period, 35% of patients did not reach the threshold versus 5% with the other meals (P<.01). CONCLUSIONS: Patients and physicians should be warned for a detrimental food-drug interaction when alectinib is taken with low-fat yogurt, because it results in a clinically relevant lower alectinib exposure. Intake with a self-chosen lunch did not change drug exposure and could be a safe and patient-friendly alternative

    The influence of green tea extract on nintedanib's bioavailability in patients with pulmonary fibrosis

    Get PDF
    Nintedanib is an oral small-molecule kinase inhibitor and first-line treatment for idiopathic pulmonary fibrosis. Nintedanib is a substrate of the drug efflux transporter ABCB1. Green tea flavonoids --especially epigallocatechin gallate (EGCG)-- are potent ABCB1 modulators. We investigated if concomitant administration of green tea extract (GTE) could result in a clinically relevant herb-drug interaction. Patients were randomized between A-B and B-A, with A being nintedanib alone and B nintedanib with GTE. Both periods lasted 7 days, in which nintedanib was administered twice daily directly after a meal. In period B, patients additionally received capsules with GTE (500 mg BID, >60% EGCG). Pharmacokinetic sampling for 12 h was performed at day 7 of each period. Primary endpoint was change in geometric mean for the area under the curve (AUC0–12 h). A linear mixed model was used to analyse AUCs and maximal concentration (Cmax). In 26 included patients, the nintedanib AUC0–12 h was 21% lower (95% CI −29% to −12%; P T wild type variant. No differences in toxicities were observed. Exposure to nintedanib decreased with 21% when administered 60 min after GTC for only 7 days. This is a statistically significant interaction which could potentially impair treatment efficacy. Before patients and physicians should definitely be warned to avoid this combination, prospective clinical validation of an exposure-response relationship is necessary

    Influence of germline variations in drug transporters ABCB1 and ABCG2 on intracerebral osimertinib efficacy in patients with non-small cell lung cancerResearch in context

    Get PDF
    Summary: Background: Central nervous system (CNS) metastases are present in approximately 40% of patients with metastatic epidermal growth factor receptor-mutated (EGFRm+) non-small cell lung cancer (NSCLC). The EGFR-tyrosine kinase inhibitor osimertinib is a substrate of transporters ABCB1 and ABCG2 and metabolized by CYP3A4. We investigated relationships between single nucleotide polymorphisms (SNPs) ABCB1 3435C>T, ABCG2 421C>A and 34G>A, and CYP3A4∗22 and CNS treatment efficacy of osimertinib in EGFRm+ NSCLC patients. Methods: Patients who started treatment with osimertinib for EGFRm+ NSCLC between November 2014 and June 2021 were included in this retrospective observational multicentre cohort study. For patients with baseline CNS metastases, the primary endpoint was CNS progression-free survival (CNS-PFS; time from osimertinib start until CNS disease progression or death). For patients with no or unknown baseline CNS metastases, the primary endpoint was CNS disease-free survival (CNS-DFS; time from osimertinib start until occurrence of new CNS metastases). Relationships between SNPs and baseline characteristics with CNS-PFS and CNS-DFS were studied with competing-risks survival analysis. Secondary endpoints were relationships between SNPs and PFS, overall survival, severe toxicity, and osimertinib pharmacokinetics. Findings: From 572 included patients, 201 had baseline CNS metastases. No SNP was associated with CNS-PFS. Genotype ABCG2 34GA/AA and/or ABCB1 3435CC --present in 35% of patients-- was significantly associated with decreased CNS-DFS (hazard ratio 0.28; 95% CI 0.11–0.73; p = 0.009) in the multivariate analysis. This remained significant after applying a Bonferroni correction and internal validation through bootstrapping. ABCG2 421CA/AA was related to more severe toxicity (27.0% versus 16.5%; p = 0.010). Interpretation: ABCG2 34G>A and ABCB1 3435C>T are predictors for developing new CNS metastases during osimertinib treatment, probably because of diminished drug levels in the CNS. ABCG2 421C>A was significantly related with the incidence of severe toxicity. Pre-emptive genotyping for these SNPs could individualize osimertinib therapy. Addition of ABCG2 inhibitors for patients without ABCG2 34G>A should be studied further, to prevent new CNS metastases during osimertinib treatment. Funding: No funding was received for this trial
    corecore