842 research outputs found

    Family and government insurance: Wage, earnings, and income risks in the Netherlands and the U.S.

    Get PDF
    We document new facts about risk in male wages and earnings, household earnings, and pre- and post-tax income in the Netherlands and the United States. We find that, in both countries, earnings display important deviations from the typical assumptions of linearity and normality. Individual-level male wage and earnings risk is relatively high at the beginning and end of the working life, and for those in the lower and upper parts of the income distribution. Hours are the main driver of the negative skewness and, to a lesser extent, the high kurtosis of earnings changes. Even though we find no evidence of added-worker effects, the presence of spousal earnings reduces the variability of household income compared to that of male earnings. In the Netherlands, government transfers are a major source of insurance, substantially reducing the standard deviation, negative skewness, and kurtosis of income changes. In the U.S. the role of family insurance is much larger than in the Netherlands. Family and government insurance reduce, but do not eliminate non-linearities in household disposable income by age and previous earnings in either country

    Cavity Optomechanical Magnetometer

    Get PDF
    A cavity optomechanical magnetometer is demonstrated where the magnetic field induced expansion of a magnetostrictive material is transduced onto the physical structure of a highly compliant optical microresonator. The resulting motion is read out optically with ultra-high sensitivity. Detecting the magnetostrictive deformation of Terfenol-D with a toroidal whispering gallery mode (TWGM) resonator a peak sensitivity of 400 nT/Hz^.5 was achieved with theoretical modelling predicting that sensitivities of up to 500 fT/Hz^.5 may be possible. This chip-based magnetometer combines high-sensitivity and large dynamic range with small size and room temperature operation

    A Web-Based Institutional DICOM Distribution System with the Integration of the Clinical Trial Processor (CTP)

    Get PDF
    To develop and test a fast and easy rule-based web-environment with optional de-identification of imaging data to facilitate data distribution within a hospital environment. A web interface was built using Hypertext Preprocessor (PHP), an open source scripting language for web development, and Java with SQL Server to handle the database. The system allows for the selection of patient data and for de-identifying these when necessary. Using the services provided by the RSNA Clinical Trial Processor (CTP), the selected images were pushed to the appropriate services using a protocol based on the module created for the associated task. Five pipelines, each performing a different task, were set up in the server. In a 75 month period, more than 2,000,000 images are transferred and de-identified in a proper manner while 20,000,000 images are moved from one node to another without de-identification. While maintaining a high level of security and stability, the proposed system is easy to setup, it integrate well with our clinical and research practice and it provides a fast and accurate vendor-neutral process of transferring, de-identifying, and storing DICOM images. Its ability to run different deidentification processes in parallel pipelines is a major advantage in both clinical and research setting

    Recommendations for the Determination of Nutrients in Seawater to High Levels of Precision and Inter-Comparability using Continuous Flow Analysers

    Get PDF
    The Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) brings together scientists with interests in physical oceanography, the carbon cycle, marine biogeochemistry and ecosystems, and other users and collectors of ocean interior data to develop a sustained global network of hydrographic sections as part of the Global Ocean Climate Observing System. A series of manuals and guidelines are being produced by GO-SHIP which update those developed by the World Ocean Circulation Experiment (WOCE) in the early 1990s. Analysis of the data collected in WOCE suggests that improvements are needed in the collection of nutrient data if they are to be used for determining change within the ocean interior. Production of this manual is timely as it coincides with the development of reference materials for nutrients in seawater (RMNS). These RMNS solutions will be produced in sufficient quantities and be of sufficient quality that they will provide a basis for improving the consistency of nutrient measurements both within and between cruises. This manual is a guide to suggested best practice in performing nutrient measurements at sea. It provides a detailed set of advice on laboratory practice for all the procedures surrounding the use of 1 gas-segmented continuous flow analysers (CFA) for the determination of dissolved nutrients (usually ammonium, nitrate, nitrite, phosphate and silicate) at sea. It does not proscribe the use of a particular instrument or related chemical method as these are well described in other publications. The manual provides a brief introduction to the CFA method, the collection and storage of samples, considerations in the preparation of reagents and the calibrations of the system. It discusses how RMNS solutions can be used to “track” the performance of a system during a cruise and between cruises. It provides a format for the meta-data that need to be reported along side the sample data at the end of a cruise so that the quality of the reported data can be evaluated and set in context relative to other data sets. Most importantly the central manual is accompanied by a set of nutrient standard operating procedures (NSOPs) that provide detailed information on key procedures that are necessary if best quality data are to be achieved consistently. These cover sample collection and storage, an example NSOP for the use of a CFA system at sea, high precision preparation of calibration solutions, assessment of the true calibration blank, checking the linearity of a calibration and the use of internal and externally prepared reference solutions for controlling the precision of data during a cruise and between cruises. An example meta-data report and advice on the assembly of the quality control and statistical data that should form part of the meta-data report are also given

    Validation of an AI-based algorithm for measurement of the thoracic aortic diameter in low-dose chest CT

    Get PDF
    OBJECTIVES: To evaluate the performance of artificial intelligence (AI) software for automatic thoracic aortic diameter assessment in a heterogeneous cohort with low-dose, non-contrast chest computed tomography (CT).MATERIALS AND METHODS: Participants of the Imaging in Lifelines (ImaLife) study who underwent low-dose, non-contrast chest CT (August 2017-May 2022) were included using random samples of 80 participants &lt;50y, ≥80y, and with thoracic aortic diameter ≥40 mm. AI-based aortic diameters at eight guideline compliant positions were compared with manual measurements. In 90 examinations (30 per group) diameters were reassessed for intra- and inter-reader variability, which was compared to discrepancy of the AI system using Bland-Altman analysis, paired samples t-testing and linear mixed models.RESULTS: We analyzed 240 participants (63 ± 16 years; 50 % men). AI evaluation failed in 11 cases due to incorrect segmentation (4.6 %), leaving 229 cases for analysis. No difference was found in aortic diameter between manual and automatic measurements (32.7 ± 6.4 mm vs 32.7 ± 6.0 mm, p = 0.70). Bland-Altman analysis yielded no systematic bias and a repeatability coefficient of 4.0 mm for AI. Mean discrepancy of AI (1.3 ± 1.6 mm) was comparable to inter-reader variability (1.4 ± 1.4 mm); only at the proximal aortic arch showed AI higher discrepancy (2.0 ± 1.8 mm vs 0.9 ± 0.9 mm, p &lt; 0.001). No difference between AI discrepancy and inter-reader variability was found for any subgroup (all: p &gt; 0.05).CONCLUSION: The AI software can accurately measure thoracic aortic diameters, with discrepancy to a human reader similar to inter-reader variability in a range from normal to dilated aortas.</p
    corecore