1,005 research outputs found

    Anisotropy of Vortex-Liquid and Vortex-Solid Phases in Single Crystals of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}: Violation of the Scaling Law

    Full text link
    The vortex-liquid and vortex-solid phases in single crystals of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} placed in tilted magnetic fields are studied by in-plane resistivity measurements using the Corbino geometry to avoid spurious surface barrier effects. It was found that the anisotropy of the vortex-solid phase increases with temperature and exhibits a maximum at T0.97TcT\approx 0.97 T_c. In contrast, the anisotropy of the vortex-liquid rises monotonically across the whole measured temperature range. The observed behavior is discussed in the context of dimensional crossover and thermal fluctuations of vortices in the strongly layered system.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Evolution of deformation and breakage in sand studied using X-ray tomography

    Get PDF
    International audienceParticle breakage of a granular material can cause significant changes in its microstructure, which will govern its macroscopic behaviour; this explains why the mechanisms leading to particle breakage have been a common subject within several fields, including geomechanics. In this paper, X-ray computed micro-tomography is used, to obtain three-dimensional images of entire specimens of sand, during high-confinement triaxial compression tests. The acquired images are processed and measurements are made on breakage, local variations of porosity, volumetric strain, maximum shear strain and grading. The evolution and spatial distribution of quantified breakage and the resulting particle size distribution for the whole specimen and for specific areas are presented here for the first time and are further related to the localised shear and volumetric strains. Before peak stress is reached, compaction is the governing mechanism leading to breakage; neither compressive strains nor breakage are significantly localised and the total amount of breakage is rather low. Post peak, in areas where strains localise and breakage is present, a dilative volumetric behaviour is observed locally, as opposed to the overall compaction of the specimen. Some specimens exhibited a compaction around the shear band at the end of the test, but there was no additional breakage at that point. From the grading analysis, it is found that mainly the grains with diameter close to the mean diameter of the specimen are the ones that break, whereas the biggest grains that are present in the specimen remain intact

    Liquid Marble Actuator for Microfluidic Logic Systems

    Get PDF
    © 2018, The Author(s). A mechanical flip-flop actuator has been developed that allows for the facile re-routing and distribution of liquid marbles (LMs) in digital microfluidic devices. Shaped loosely like a triangle, the actuating switch pivots from one bistable position to another, being actuated by the very low mass and momentum of a LM rolling under gravity (~4 × 10 −6 kg ms −1 ). The actuator was laser-cut from cast acrylic, held on a PTFE coated pivot, and used a PTFE washer. Due to the rocking motion of the switch, sequential LMs are distributed along different channels, allowing for sequential LMs to traverse parallel paths. This distributing effect can be easily cascaded, for example to evenly divide sequential LMs down four different paths. This lightweight, cheap and versatile actuator has been demonstrated in the design and construction of a LM-operated mechanical multiplication device — establishing its effectiveness. The actuator can be operated solely by gravity, giving it potential use in point-of-care devices in low resource areas

    Mechanical sequential counting with liquid marbles

    Get PDF
    © 2018, Springer International Publishing AG, part of Springer Nature. Here we demonstrate the first working example of a liquid marble-operated sequential binary counting device. We have designed a lightweight gate that can be actuated by the low mass and momentum of a liquid marble. By linking a number of these gates in series, we are able to digitally count up to binary 1111 (upper limit only by our requirements). Using liquid marbles in such a system opens up new avenues of research and design, by way of modifying the coating and/or core of the liquid marbles, and thereby giving extra dimensions for calculation (e.g. a calculation that takes into consideration the progress of a chemical reaction inside a liquid marble). In addition, the new gate design has multiple uses in liquid marble rerouting

    Experiments in vortex avalanches

    Full text link
    Avalanche dynamics is found in many phenomena spanning from earthquakes to the evolution of species. It can be also found in vortex matter when a type II superconductor is externally driven, for example, by increasing the magnetic field. Vortex avalanches associated with thermal instabilities can be an undesirable effect for applications, but "dynamically driven" avalanches emerging from the competition between intervortex interactions and quenched disorder constitute an interesting scenario to test theoretical ideas related with non-equilibrium dynamics. However, differently from the equilibrium phases of vortex matter in type II superconductors, the study of the corresponding dynamical phases - in which avalanches can play a role - is still in its infancy. In this paper we critically review relevant experiments performed in the last decade or so, emphasizing the ability of different experimental techniques to establish the nature and statistical properties of the observed avalanche behavior.Comment: To be published in Reviews of Modern Physics April 2004. 17 page

    The association of HLA-DQB1, -DQA1 and -DPB1 alleles with anti- glomerular basement membrane (GBM) disease in Chinese patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human leukocyte antigen (HLA) alleles are associated with many autoimmune diseases, including anti-glomerular basement membrane (GBM) disease. In our previous study, it was demonstrated that HLA-DRB1*1501 was strongly associated with anti-GBM disease in Chinese. However, the association of anti-GBM disease and other HLA class II genes, including HLA-DQB1, -DQA1,-DPB1 alleles, has rarely been investigated in Asian, especially Chinese patients. The present study further analyzed the association between anti-GBM disease and HLA-DQB1, -DQA1, and -DPB1 genes. Apart from this, we tried to locate the potential risk amino acid residues of anti-GBM disease.</p> <p>Methods</p> <p>This study included 44 Chinese patients with anti-GBM disease and 200 healthy controls. The clinical and pathological data of the patients were collected and analyzed. Typing of HLA-DQB1, -DQA1 and -DPB1 alleles were performed by bi-directional sequencing of exon 2 using the SeCoreTM Sequencing Kits.</p> <p>Results</p> <p>Compared with normal controls, the prevalence of HLA-DPB1*0401 was significantly lower in patients with anti-GBM disease (3/88 vs. 74/400, p = 4.4 × 10<sup>-4</sup>, pc = 0.039). Comparing with normal controls, the combination of presence of DRB1*1501 and absence of DPB1*0401 was significantly prominent among anti-GBM patients (p = 2.0 × 10<sup>-12</sup>, pc = 1.7 × 10<sup>-10</sup>).</p> <p>Conclusions</p> <p>HLA-DPB1*0401 might be a protective allele to anti-GBM disease in Chinese patients. The combined presence of DRB1*1501 and absence of DPB1*0401 might have an even higher risk to anti-GBM disease than HLA-DRB1*1501 alone.</p

    A rare case of complete C2–C3 dislocation with mild neurological symptoms

    Get PDF
    The authors report a rare case of complete C2–C3 dislocation with unexpectedly mild neurological symptoms in a 57 year old man involved in a motor vehicle accident, who had previously undergone posterior laminectomy from C3 through C7. A retrospective chart analysis and a thorough radiographic review were performed. X-rays and CT of the cervical spine demonstrated a complete dislocation at the C2–C3 level. Computed tomographic angiography revealed disruption of both vertebral arteries; however, blood flow was evident in the basilar artery. After radiologically guided placement in cervical traction with tongs that reduced the subluxation by approximately 50% the patient had spontaneous eye opening and was able to follow commands. A two-stage 360(o) stabilization and fusion was performed and the patient was finally discharged 24 days after admission with his neurological status essentially unchanged. In conclusion, our patient presented with surprisingly mild neurological symptoms. The previously performed laminectomy could have both predisposed to injury as well as protected his spinal cord from potentially fatal trauma

    Development of a polysaccharide-based hydrogel drug delivery system (DDS): An update

    Get PDF
    Delivering a drug to the target site with minimal-to-no off-target cytotoxicity is the major determinant for the success of disease therapy. While the therapeutic efficacy and cytotoxicity of the drug play the main roles, the use of a suitable drug delivery system (DDS) is important to protect the drug along the administration route and release it at the desired target site. Polysaccharides have been extensively studied as a biomaterial for DDS development due to their high biocompatibility. More usefully, polysaccharides can be crosslinked with various molecules such as micro/nanoparticles and hydrogels to form a modified DDS. According to IUPAC, hydrogel is defined as the structure and processing of sols, gels, networks and inorganic–organic hybrids. This 3D network which often consists of a hydrophilic polymer can drastically improve the physical and chemical properties of DDS to increase the biodegradability and bioavailability of the carrier drugs. The advancement of nanotechnology also allows the construction of hydrogel DDS with enhanced functionalities such as stimuli-responsiveness, target specificity, sustained drug release, and therapeutic efficacy. This review provides a current update on the use of hydrogel DDS derived from polysaccharide-based materials in delivering various therapeutic molecules and drugs. We also highlighted the factors that affect the efficacy of these DDS and the current challenges of developing them for clinical use
    corecore