2,171 research outputs found

    Design of wideband vibration-based electromagnetic generator by means of dual-resonator

    Get PDF
    This paper describes the design of a wideband electromagnetic energy harvester that utilizes a novel dual-resonator method to improve the operational frequency range of the vibration-based generator. The device consists of two separate resonator systems (coil and magnet), which each comply with their respective resonance frequencies. This is because both resonators are designed in such a way that both magnet and coil components will oscillate at an additive phase angle, and hence create greater relative motion between the two dominating resonance frequencies, which realizes the wideband generator. Each resonator system consists of a distinctive cantilever beam, one attached with four magnets and steel keepers, the other attached with a copper coil and stainless steel holder as the free end mass. Both cantilevers are clamped and fitted to a common base that is subjected to a vibration source. Basic analytical models are derived and a numerical model is implemented in MATLAB-Simulink. Electromagnetic, structural modal and static mechanical analysis for the design of the prototype are completed using ANSYS finite element tools. For a 0.8 m s−2 acceleration, the open-loop voltage obtained from the experiment shows a good correlation with those from the simulation. Peak induced voltage is measured to be 259.5Vrms as compared to 240.9Vrms from the simulator at 21.3 Hz, which implies an error range of 7.7%. The results also indicate that there is a maximum of 58.22% improvement in the induced voltage within the intermediate region which occurs at the intersection point between the output response plots of two single resonator generators

    Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications

    Get PDF
    Due to the increasing demand for harvesting energy from environmental vibration, for use in self-powered electronic applications, cantilever-based vibration energy harvesting has attracted great interest from various parties and become one of the most common approaches to convert redundant mechanical energy into electrical energy. As the output voltage produces from a piezoelectric material depends greatly on the geometric shape and the size of the beam, there is a need to model and compare the performance of cantilever beams of differing geometries. This paper presents the study of strain distribution in various shapes of cantilever beams, including a convex and concave edge profile elliptical beams that have been overseen in most of the prior literature. Both analytical and finite element models are derived and the resultant strain distributions in the beam are computed based on MATLAB solver and ANSYS finite element analysis tools. An optimum geometry for a vibration-based energy harvester system is verified. Lastly, experimental results comparing the power density for a triangular and rectangular piezoelectric beams are also presented to validate the finding of the study and the claim as suggested in the literature is verified

    Vortex Matter Transition in Bi2{}_2Sr2{}_2CaCu2{}_2O8+y{}_{8+y} under Tilted Fields

    Full text link
    Vortex phase diagram under tilted fields from the cc axis in Bi2{}_2Sr2{}_2CaCu2{}_2O8+y{}_{8+y} is studied by local magnetization hysteresis measurements using Hall probes. When the field is applied at large angles from the cc axis, an anomaly (HpH_p^\ast) other than the well-known peak effect (HpH_p) are found at fields below HpH_p. The angular dependence of the field HpH_p^\ast is nonmonotonic and clearly different from that of HpH_p and depends on the oxygen content of the crystal. The results suggest existence of a vortex matter transition under tilted fields. Possible mechanisms of the transition are discussed.Comment: Revtex, 4 pages, some corrections are adde

    High Aspect Pattern Formation by Integration of Micro Inkjetting and Electroless Plating

    Get PDF
    This paper reports on formation of high aspect micro patterns on low temperature co-fired ceramic (LTCC) substrates by integrating micro inkjetting with electroless plating. Micro inkjetting was realized by using an inkjetting printer that ejects ink droplets from a printhead. This printhead consists of a glass nozzle with a diameter of 50 micrometers and a piezoelectric transducer that is coated on the nozzle. The silver colloidal solution was inkjetted on a sintered CT800 ceramic substrate, followed by curing at 200 degrees C for 60 minutes. As a result, the silver trace with a thickness of 200 nm was obtained. The substrate, with the ejected silver thin film as the seed layer, was then immersed into a preinitiator solution to coat a layer of palladium for enhancing the deposition of nickel. Electroless nickel plating was successfully conducted at a rate of 0.39 micrometers /min, and the thickness of traces was plated up to 84 micrometers. This study demonstrates that the integration of inkjetting with plating is an effective method to form high aspect patterns at the demand location.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Hydrogels that listen to cells:a review of cell-responsive strategies in biomaterial design for tissue regeneration

    Get PDF
    The past decade has seen a decided move from static and passive biomaterials to biodegradable, dynamic, and stimuli responsive materials in the laboratory and the clinic. Recent advances towards the rational design of synthetic cell-responsive hydrogels-biomaterials that respond locally to cells or tissues without the input of an artificial stimulus-have provided new strategies and insights on the use of artificial environments for tissue engineering and regenerative medicine. These materials can often approximate responsive functions of a cell's complex natural extracellular environment, and must respond to the small and specific stimuli provided within the vicinity of a cell or tissue. In the current literature, there are three main cell-based stimuli that can be harnessed to create responsive hydrogels: (1) enzymes (2) mechanical force and (3) metabolites/small molecules. Degradable bonds, dynamic covalent bonds, and non-covalent or supramolecular interactions are used to provide responsive architectures that enable features ranging from cell selective infiltration to control of stem-cell differentiation. The growing ability to spatiotemporally control the behavior of cells and tissue with rationally designed responsive materials has the ability to allow control and autonomy to future generations of materials for tissue regeneration, in addition to providing understanding and mimicry of the dynamic and complex cellular niche

    Predictive analytics for cardiovascular patient readmission and mortality: An explainable approach

    Full text link
    Background: Cardiovascular patients experience high rates of adverse outcomes following discharge from hospital, which may be preventable through early identification and targeted action. This study aimed to investigate the effectiveness and explainability of machine learning algorithms in predicting unplanned readmission and death in cardiovascular patients at 30 days and 180 days from discharge. Methods: Gradient boosting machines were trained and evaluated using data from hospital electronic medical records linked to hospital administrative and mortality data for 39,255 patients admitted to four hospitals in New South Wales, Australia between 2017 and 2021. Sociodemographic variables, admission history, and clinical information were used as potential predictors. The performance was compared to LASSO regression, as well as the HOSPITAL and LACE risk score indices. Important risk factors identified by the gradient-boosting machine model were explored using Shapley values. Results: The models performed well, especially for the mortality outcomes. Area under the receiver operating characteristic curve values were 0.70 for readmission and 0.87–0.90 for mortality using the full gradient boosting machine algorithms. Among the top predictors for 30-day and 180-day readmission were increased red cell distribution width, old age (especially above 80 years), high measured troponin and urea levels, not being married or in a relationship, and low albumin levels. For mortality, these included increased red cell distribution width, old age (especially older than 70 years), high measured troponin and urea levels, high neutrophil and monocyte counts, and low eosinophil and lymphocyte counts. The Shapley values gave clear insight into the dynamics of decision-tree-based models. Conclusions: We demonstrated an explainable predictive algorithm to identify cardiovascular patients who are at high risk of readmission or death at discharge from the hospital and identified key risk factors

    Correlation Between Polymer Packing And Gas Transport Properties For Co2/N2 Separation In Glassy Fluorinated Polyimide Membrane

    Get PDF
    Gas separation performance of a membrane highly hinges on its physical properties. In this study, the interplay between polymer packing of a membrane and its gas transport behaviours (permeability and selectivity) was investigated through a series of 6FDA-DAM:DABA (3:2) polyimide membranes with different polymer compactness. The chemical structure and the polymer packing of the resulting membrane were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and packing density measurement, respectively. CO2/N2 separation efficiency of the membrane was evaluated at 25oC with feed pressure up to 6 bar. N2 permeability was found to rely on the membrane’s packing density, which signified its greater dependence on molecular sieving. In contrast, sorption showed a more vital role in determining the CO2 permeability. In this work, the membrane with a final thickness of 97±2 μm had successfully surpassed the Robeson’s 2008 upper bound plot with a CO2 permeability of 83 Barrer and CO2/N2 selectivity of 97 at 3 bar permeation

    Controlling laser spectra in a phaseonium photonic crystal using maser

    Full text link
    We study the control of quantum resonances in photonic crystals with electromagnetically induced transparency driven by microwave field. In addition to the control laser, the intensity and phase of the maser can alter the transmission and reflection spectra in interesting ways, producing hyperfine resonances through the combined effects of multiple scattering in the superstructure.Comment: 7 pages, 4 figure

    Genetic characterization of Porcine Circovirus 2 found in Malaysia

    Get PDF
    Background: Porcine circovirus type 2 is the primary etiological agent associated with a group of complex multi-factorial diseases classified as Porcine Circovirus Associated Diseases (PCVAD). Sporadic cases reported in Malaysia in 2007 caused major economic losses to the 2.2 billion Malaysian ringgit (MYR) (approximately 0.7 billion US dollar) swine industry. The objective of the present study was to determine the association between the presence of PCV2 and occurrences of PCVAD. Results: This study showed that 37 out of 42 farms sampled were positive for PCV2 using PCR screening. Thirteen whole genome of PCV2 isolates from pigs with typical PCVAD symptoms were successfully sequenced. These isolates shared 98.3-99.2% similarities with sequences of isolates from the Netherlands. All thirteen isolates fell into the same clade as PCV2b isolates from other countries. Amino acid sequence analysis of the putative capsid protein (ORF2) of the PCV2 revealed that there are three clusters found in Malaysia, namely cluster 1C and 1A/1B. Of interest, three of the isolates (isolates Mal 005, Mal 006 and Mal 010) had a proline substitution for arginine or isoleucine encoded at nt. position 88-89. Eight of the isolates had mutations at the C terminus of the putative capsid protein suggestive of higher pathogenicity which may account for the high reports of PCVAD clinical symptoms in 2007. Conclusion: Phylogenetic study suggests that there may be a link between movements of animals by import of breeders into the country being the route of entry of the virus. While it is not possible to eradicate the virus from commercial pigs, the swine industry in Malaysia can be safeguarded by control measures implemented throughout the country. These measures should include improved biosecurity, disease surveillance; vaccination as well as enforcement of regulations formulated to control and prevent the spread of this disease on a national scale
    corecore