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Abstract Due to the increasing demand for harvesting energy from environmental vibra-
tion, for use in self-powered electronic applications, cantilever-based vibration energy har-
vesting has attracted great interest from various parties and become one of the most common
approaches to convert redundant mechanical energy into electrical energy. As the output
voltage produces from a piezoelectric material depends greatly on the geometric shape and
the size of the beam, there is a need to model and compare the performance of cantilever
beams of differing geometries. This paper presents the study of strain distribution in various
shapes of cantilever beams, including a convex and concave edge profile elliptical beams
that have been overseen in most of the prior literature. Both analytical and finite element
models are derived and the resultant strain distributions in the beam are computed based
on MATLAB solver and ANSYS finite element analysis tools. An optimum geometry for a
vibration-based energy harvester system is verified. Lastly, experimental results comparing
the power density for a triangular and rectangular piezoelectric beams are also presented to
validate the finding of the study and the claim as suggested in the literature is verified.
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1 Introduction

Energy harvesting is the process by which energy is captured from ambient resources (e.g.,
solar, thermal, wind, biochemical, vibration and etc.) and converted to electrical energy for
storage or use. Over the last decade, due to the advances in integrated circuits, the size
and power consumption of electronic devices have been dramatically reduced [1], which
has made it possible to power devices by energy harvesting techniques without any external
power sources. Wireless sensor systems are creating much interest because of their flexibility
and wider range of usable applications. By removing the wire or replaceable battery from
the devices, this unlocks the potential for placing the devices in previously inaccessible
locations, such as roof tops, underneath floor panels, implanted into building walls etc. On
top of this, by incorporating the energy harvesting into devices, several shortcomings of
conventional electronic devices may be overcome, such as the limited lifetime that results
from the finite batteries capacity and higher maintenance costs for batteries replacement
programs.

Vibration energy is one of the common resources that is available at many locations
targeted for wireless sensors. For example, vibration energy is generally left unused and re-
dundant in buildings, machinery, traffic infrastructures and many more locations. This makes
vibration energy one of the most attractive energy harvesting area to be further investigated
for use in electronic devices and wireless sensor networks as the power source. A few differ-
ent types of transducer are generally used for the conversion of vibration to electricity, they
are: electrostatic [2], electromagnetic [3], magnetostrictive [4] and piezoelectric [5]. Each
type has its own advantages and drawbacks in term of the device size, output power density,
cost and so on. However, due to the energy conversion efficiency, piezoelectric transducers
have rapidly gained momentum in recent years as one of the most reliable mechanisms for
converting mechanical energy into electrical form [6]. Piezoelectric materials are resilient,
chemically inert, small in size and allow operation at high temperature, humidity and other
challenging environmental conditions. This makes this type of transducer suitable for many
industrial applications, such as powering machinery sensors that operate over a wide tem-
perature range and in dusty environments.

Although there are many other type of beam configurations available [7–10], cantilever
beam configurations are still in favor as they give lower resonant frequencies and relatively
higher strain for a given force input [11], whereas the successful maximum power harvested
has shown to be greater for beams with lower resonant frequencies [12]. An electrical po-
tential difference will be generated from a piezoelectric material when pressure is applied to
it. This effect is widely utilized by many researchers in energy harvesting to convert kinetic
motions into electrical energy. Many sources in the literature have shown that piezoelec-
tric transduction is an effective conversion mechanism for use in energy harvesting [13–
16]. These energy harvesting devices typically consists of a cantilever beam made from a
piezoelectric element and a tip mass. Vibration of the mounting of the cantilever causes
deformation of the beam and hence the generation of electricity. In order to extract the
greatest output voltage from a piezoelectric material, the type of materials and shape of the
beam must be carefully selected. Due to its high piezoelectric coupling coefficient, Lead
Zicronate Titanate (PZT) is preferable to other materials [17] including Zinc oxide (ZnO),
Gallium Orthophosphate (GaPO4) and Polyvinylidene Difluoride (PVDF). Apart from the
material, the geometric parameters such as the beam width, thickness and length will also
affect on amount of output generating from the beam [18]. To maximize the output, one
can matches the electrical circuit impedance to the output load [19], or maximizes the ma-
terial efficiency by maintaining a higher level of average strain in the beam elements. Yet,
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Fig. 1 Center line on a rectangular cantilever beam

the peak strain must be limited to avoid permanent damage to the beam. Thus, the great-
est power density can be achieved if all parts of the cantilever experience equal strain at
a value just below the maximum acceptable strain on the material (the maximum accept-
able strain might be set to the yield strength of the material, or at a lower value selected
to give an appropriate number of cycles before failure due to fatigue). Some works have
been done to mathematically compare the performance from various shapes of piezoelectric
beam [20,21]. It is concluded that, for the same volume of piezoelectric material, a tapered
beam (approaching a triangular shape) will have more evenly distributed strain throughout
the structure as opposed to a rectangular beam that contains a non-uniform strain distribu-
tion. Hence, a smaller, higher average output power density and less expensive harvester
can be achieved by implementing a truncated triangle cantilever beam in an energy harvest-
ing system. However, it is worthwhile to investigate the output response and behavior from
an elliptically profiled beams which, to author best knowledge, yet to be considered in any
previous literature works. It is known that the fundamental vibration frequency for almost
all the energy harvester applications is fell under lower frequency, typically from 10 Hz to
250 Hz [22]. Hence, it is assumed that all the beams under investigation in this paper will
only be oscillated in 1st mode vibration and due to this assumption, it is appropriate and
sufficient to model the beam using static analysis.

The main focus of this paper is to compare the strain distribution of various geometry
shapes of single layer cantilever beam, including the elliptically profiled beams. The strain
effects in each beam are studied analytically and numerically by using the MATLAB solver
and ANSYS multiphysics tools, respectively. Both simulated results are then discussed and
benchmarked among themselves to validate the findings in this investigation. Experimental
results are also presented to validate the findings from analytical and finite element analysis
studies and, lastly, the results are discussed and conclusions drawn.
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Fig. 2 Cantilever beam with concentrated force at the free end

2 Analytical modelling of a cantilever beam

2.1 Model

An analytical model is developed to determine the strain along the center line of the can-
tilever in the x direction. It will be assumed that the strain is uniform in the y direction as
given in Fig. 1.

For a cantilever beam with one end fixed and the other end is free to move, as shown in
Fig. 2, the bending moment, M, at a point x along the cantilever beam from point A to point
B, can be given as [23]:

M(x) = F(L− x) (1)

When the width of the beam, b(x) is allowed to vary along its length, x, the moment of
inertia at a distance x from the root is:

I(x) =
b(x)h3

12
(2)

where F is the free end force, x is the position along the beam from the origin point A, L
is the total length of the beam, b and h are the width and height dimension of the beam,
respectively. Assuming that the strain across the width of the cantilever beam is constant
and that the deflection is small, then it is clear that when x = L, the bending moment at the
free end for the cantilever will becomes zero. Generally, the tensile stress experienced by
the beam can be expressed as [23]:

σ =
M(x)c
I(x)

= Ec
∂ 2u
∂x2 (3)

where c is the distance from the beams neutral axis to a point of interest (c is constant along
x for a fixed height cantilever beam), ∂ 2u

∂x2 is the second derivative of the beam deflection,
u, and E is the Youngs Modulus for the material used in beam. The relationship of bending
strain at any x location as a function of beam curvature, R, and the distance from the neutral
axis can be given as [24]:

ε(x) =
c
R

(4)

Given that the Youngs Modulus for the material is E = σ/ε , then this gives the axial
strain above the neutral axis as:

ε(x) = c
∂ 2u
∂x2 =

M(x)c
IE

(5)
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Fig. 3 Different geometry shape cantilever beams under investigation

Table 1 Fixed and free end width dimensions for different geometry beam structures

Structures Fixed end width, Fixed end width,
bo(mm) bfree(mm)

1 10 10
2 15 5
3 15 very small < 1
4 16 4
5 16 4

This implies that the second derivative of the beam deflection is equal to the inverse of the
radius of curvature, ∂ 2u

∂x2 = 1
R .

Five different geometry beam structures have been investigated under this study, as
shown in Fig. 3. Structure 1 is an ordinary rectangular beam, structure 2 is a trapezoidal
beam and structure 3 is a triangular beam (ultimate trapezoidal condition). Two elliptically
profiled beams were also included in the study to further investigate the effect on the beam
strain if the width geometry varies elliptically; they are structures 4 and 5, which have con-
vex and concave edge profile, respectively. If a line along the beam length is drawn through
the center line of the beam surface, perpendicular to the fixed end then the strain values at all
points on the center line (only shown in structure 3 but applies to all structures in Fig. 3) can
be considered and plotted. All structures under test are fixed on one side while a constant
tip force is applied at the free end. For the purpose of these calculations, it is assumed that
the beam length, L, and height, h (not shown in the figure), are set as 30 mm and 2 mm,
respectively. The width dimensions of the beam ends for all the structures under test are
summarized in Table 1.

Due to the differences in the beam profiles given Fig. 3, the strains in the beams for a
given load is not directly comparable. Hence, to normalize all the relative strain from the
different structures, the ratio of relative strain values at each point along the centerline to the
maximum strain of that particular structure is considered in the comparison. This is to ensure
that all results computed from different geometry structures are normalized and comparable
regardless of the differences in geometry parameters. The normalized strain for a given point
on the beam can be given as:

εn(x) =
ε(x)
εm

(6)

where x is the position along the beam structure, ε(x) is the relative strain at position x and
εm is the maximum relative strain in that particular beam structure. The Eq. 6 is then used as
the analytical model to compute the relative strain of the different beam geometries.
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2.2 Results and discussion for analytical modelling

In this study, the relative strain on each node is computed analytically based on Eq. 6 and
the normalized strains vary along the beam position are given in Fig. 4. It is known that for
one to extract the maximum output voltage from piezoelectric materials, the average strain
in the entire beam across the width and length must be maximized to the value where the
material encounter maximum strain, yet below the material breakage limit that will causes
permanent damage to the beam.

For structure 1, an ordinary cantilever beam with rectangular profile, it can be seen that
the highest strain concentration is created at the fixed end where the bending moment, M,
is at a maximum. However, the strain decreases as the position x along the beam increases,
which implies that other than at the fixed end, most of the material elements on this beam
are not stress to their limit and hence lower output is expected. Similarly in structure 2,
the increasingly triangular trapezoidal profile beam, the highest strain is created at the fixed
end and decreases as the beam position increases. However in this structure, the rate of
decrease increases until the strain reaches zero at the free end of the beam. Thus, averaged
over the length of the beam, this structure will have higher normalized strain in the beam
elements as compared to structure 1. For the triangular geometry in structure 3, most of the
beam elements are strained to the level that is very close to the material breakage limit and
a dramatic decrement occurs only in the region close to the free end of the beam. Hence,
this strain energy plot is considered as a close-to-perfect curve since the majority of the
material in this beam is stressed to the level just slightly below the material failure limit,
which could generates most output for the given volume of material. Furthermore, for the
profile of structure 4, the average strain for this beam is slightly greater than the curve as
provided by structure 1 but lesser than the ideal curve as provided by structure 3. Lastly, for
structure 5, it can be seen that the highest strain concentration is not created at the fixed end
like the other four structures under test, but it formed at the intermediate region of the beam
length instead. This structure shows a greater average strain curve than any other structures
in this study except the profile in structure 3. It is also noteworthy that elliptical beams such
as structures 4 and 5 are more complex to fabricate than a trapezoidal beam configurations
such as structure 2 and 3. Hence, better average strain curves can be achieved using structure
3 and yet at lower fabricating cost.

Fig. 4 shows the relative normalized strain curves along the center line for various beam
profiles. However, it is the volume of material experiencing a particular strain that is of
interested. This can be estimated by assigning the normalized strains obtained from the
center line of the beam to the entire width of the beam at the particular x value (assuming
that the strain across the width of the cantilever beam is constant). Then the general equation
of the total nodes available across the beam width at x for those tested structures can be given
as:

Nb(x) =
b(x)

b f ree(3)
(7)

where the b(x) is the beam width of the tested structure at x and b f ree(3) is the free end
width in structure 3 (smallest beam width among the structures under test). The particular
normalized strain, εn(x), can be obtained by Eq. 6 and the value is then assigned to all the
available nodes determined from Eq. 7 for the given x position. By taking the sum of the
total nodes available across the beam width for the entire x positions along the cantilever
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Fig. 4 Normalized strain (analytical) along the center line of various beam shapes under test

length, the total available nodes in a particular structure can be determined by:

NT =
L

∑
x=0

Nb(x) = Nb(0)+ · · ·+Nb(L) (8)

The values of normalized strain that assigned to all the nodes in the structures may
conveniently be visualized as histogram plots with an equally split set of bins. The data
is normalized into number of nodes in percentage by Np(#) = (N#/NT )× 100% as given
in Fig. 5, where the N# is the number of nodes available in that particular bin for # =
0,0.05,0.1, . . .0.95,1. The percentage of the nodes for the five structures under test are
summarized in Table 2. Only the nodes having the normalized strain that is larger than
0.5 (Np(>0.5)) and 0.75 (Np(>0.75)) are considered.

From Fig. 5, it can be noticed that structure 1 has almost equal proportion of nodes in
each of the bin level, meaning that the structure has non-uniform strain distribution along the
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Table 2 Number of nodes with normalized strain (analytical) bigger than 0.5 and 0.75 for beams under test

Number of nodes Number of nodes
Structures with εn > 0.5 , with εn > 0.75 ,

Np(>0.5) (%) Np(>0.75) (%)

1 50 25
2 84.32 62.44
3 100 100
4 78.15 38.88
5 91.78 85.55

Fig. 5 Histogram plots (analytical) for number of nodes against various values of normalized strain
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Fig. 6 Tip mass block with a constant force on the striped surface

cantilever beam. Followed by structure 2, the number of nodes increase as the normalized
strain goes from lower to higher strain, meaning majority of the available nodes are highly
(>0.5) strained in this structure. For structure 3, it shows an almost perfect strain distribution
across the beam with almost all the available nodes highly strained at the highest level of the
bin. For the elliptical shape structure 4, most of the available nodes are distributed around
the middle ranges of the normalized strain. Lastly for structure 5, though most of it available
nodes are highly strained, it is still less efficient if compared to structure 3. From Table 2,
it clearly indicates that structure 3 gives the best strain distribution among the structures
under test in Fig. 3 since the available nodes in this structure are strained at the normalized
strain level that is larger than 0.5 and 0.75. Although structure 5 does gives a great strain
distribution as compared to structure 1, 2 and 4, this elliptical beam configuration is more
difficult to fabricate than structure 2 or 3. Furthermore, structure 3 still provides greater
number of nodes that are strained at highest strain level.

3 Finite element modelling of cantilever beam

3.1 Model

In the previous analytical modelling, the strain was assumed to be constant across the width
of the cantilever beam, but practically it is not the case. Hence, in this section, modelling has
been carried out on similar structures as shown in Fig. 3 using the ANSYS structural static
stress analysis tool, to compare the strain distribution for a single layer piezoelectric (PZT-
5A4E) cantilever beam. The Youngs Modulus and Poissons ratio for the material used in the
beam are given as 66 Nm-2 and 0.31, respectively. Similar to the analytical modelling, all
the structures under test are fixed on the left end, but now with the tip mass represented as a
block of material (10×5×2mm) attached at the free end of the cantilever. A constant force
is then applied on the striped surface of the block as illustrated in Fig. 6. All the structures
under test are discretized (meshed) with a fix element size of 1 mm in length as depicted
in Fig. 7. Lastly, the location of the block of tip mass on each structure is marked with the
dashed lines in Fig. 7.
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Fig. 7 Discretization of beam structures under test

By applying a fixed force to all the structures on the tip mass which is placed at the
free end of each structure, the strain distribution for these beams can be computed by the
ANSYS tool as given in Fig. 8. The color tones on each structure indicates the stain level
at that particular point. To get a pragmatic strain outputs from these structures, one should
carefully selects the applied force so that the highest strain in the material of the structure
is limited below the material breakage limit. Due to the fact that the maximum strain for
every structure is altered when the geometry has changed, so it is necessary to normalized
the strain for a given point obtaining from the beam as according to Eq. 6. The normalization
is not only to ensure that all data obtained from various geometries are comparable within
this model, but also comparable with those obtained from the previous analytical model as
discussed in section 2.
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Fig. 8 ANSYS structural analysis of beam structures under test

3.2 Results and discussion for finite element modeling

From Fig. 8, it can be seen that the strain distribution on each structure varies when the
beam geometry changes and is not uniform across the beam width, as was assumed in the
previous analytical model. However, it is difficult to determine which structure provides the
best strain distribution by just observing the color tone (red means highly strained zone,
blue means the opposite). Hence, to make this finite element model comparable with the
previous analytical model, the relative strain along the beam center line (refer to Fig. 3 and
the histogram according to the number of nodes against various values of normalized strain
bins are plotted in Fig. 9 and Fig. 10 respectively. Due to the fact that the strain across the
width of the cantilever is no longer constant in each geometry, as computed by ANSYS
analysis, the data show in Fig. 9 and Fig. 10 are more variable than those obtained from
analytical model and shown in the Fig. 4 and Fig. 5.
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Fig. 9 Normalized strain (finite element) along the center line of various beam shapes under test

Despite the variability of the data from structural analysis, both finite element analysis
and analytical data are similar in the sense of their behavior. The trend of the curves in Fig. 9
and the histogram plots in Fig. 10 can be compared with those obtained analytically in Fig. 4
and Fig. 5. It can be noticed that in this strain distribution study, the ANSYS structural study
is a more precise model which considered all the non-uniform strain distribution in each
structure as compared to the analytical model computed by MATLAB solver, which assumed
that strain are constant across the width of the beam length. Although it is mathematically
possible to model the strain distribution without making any constant strain assumption
analytically, this would add complexity to the calculation in the model and the ANSYS
structural analysis method may be considered to be more effective and less time consuming.

From the data given in Fig. 8, it can be seen that there are regions of beam material
that are highly strained at the positions next to the fixed end in each structure. Similarly
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Fig. 10 Histogram plots (finite element) for number of nodes against various values of normalized strain

in Fig. 9, the normalized strain plots shown that all the structures under test have a spike
at approximately beam position x ≈ 1mm, which implies high stress concentration at that
beam section. Practically, this has reduced the maximum strain which can be allowed to
be applied on each structure before the material breakage limit. In structure 5, the stress
concentration at the middle section of the beam seems to be higher than the one near to the
fixed end section, however this kind of strain distribution pattern will result in beam failure
if an average strain of the beam is the main concern as the strain in the beam goes beyond
the material breakage limit if the average strain is pushed to the limit.

Similarly to the analytical model, the percentage of the nodes that have normalized
strain that is larger than 0.5 (Np(>0.5)) and 0.75 (Np(>0.75)) in the five structures under test
are summarized in Table 3. Although the overall percentages shown in this table are lower
than those in Table 2, they are similar in the sense of their behavior. From Fig. 9 and Fig. 10,
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Table 3 Number of nodes with normalized strain (finite element) bigger than 0.5 and 0.75 for beams under
test

Number of nodes Number of nodes
Structures with εn > 0.5 , with εn > 0.75 ,

Np(>0.5) (%) Np(>0.75) (%)

1 42.35 20.10
2 68.45 38.28
3 79.33 63.37
4 63.23 19.54
5 72.01 60.06

it can be noticed that structure 5 is comparable with structure 3 in terms of their average
strain in the beam. However from Table 3, it clearly indicates that structure 3 still gives
the best average strain distribution according to the percentage of the nodes. It consists of
79.33 % of the nodes that having normalized strain which is larger than 0.5 and 63.37 % of
the nodes that having the normalized stain which is larger than 0.75. This clearly justified
that structure 3 is still the most efficient structure to maintain optimum average strain in the
material across the beam. Not to mention that it is also more cost effective to fabricate a
triangular structure than an elliptical beams structure that could come with various elliptical
geometry profiles.

4 Experimental results

According to both aforementioned analytical and finite element model outputs, it verifies
that structure 3 is the most highly strained and cost effective geometry to be used in piezo-
electric cantilever-based energy harvesting system. Due to the good agreement between the
analytical and finite element outputs, this justify the reliability of both of the models. Apart
from that, it is also costly and difficult to cut the piezoelectric material manually into an
elliptical shape without breaking the piezoelectric elements. Piezoelectric material is best
cut using a special diamond saw, however even with practice this method does still yield
destructive cut to the parts which may affect the behavior of the beam entirely. Hence, in
this section, only an actual output power from a conventional rectangular beam (structure 1)
will be compared with the output from a triangular beam (structure 3) and it is believed that
the validation for other structures are sufficient enough from the models.

The piezoelectric bimorph actuators from Piezo System Inc. are used in this experiment.
Each beam consists of a layer of brass sandwiched between layers of PZT-5A4E material.
Fig. 11 shows the rectangular bender beam and a smaller bender beam that is carefully cut
into a triangular shape from a square beam. The control system setup for this experiment is
shown in Fig. 12. Both beams were mounted on a vibration shaker (LDS-V406/8) which was
driven by a range of driving frequencies from 40 to 60 Hz at acceleration amplitude of 0.5 g.
To determine the available maximum power that will be delivered to the load, both beam
outputs were connected to their optimum matched resistance, which were experimentally
determined as 71 kΩ and 22 kΩ for the triangular and rectangular benders respectively. The
outputs from the prototypes were recorded and analyzed by using a data acquisition adapter
(ADLINK DAQ-2205). The generated power was then computed as P = V 2/R, where V is
the peak voltage transferred to the resistive load for the system R, and the output response
of the power against the sweep driving frequencies is plotted as in Fig. 13.
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Fig. 11 Rectangular and triangular geometry benders

Fig. 12 Experimental setup of a vibration shaker system

Fig. 13(a) illustrates the recorded outputs from both triangular and rectangular beams.
It indicates that the maximum power recorded from the rectangular beam is higher than
the output recorded from the triangular beam. The rectangular and triangular beams pro-
duce 1.58 mW at 43.7 Hz and 0.23 mW at 45.5 Hz respectively, which is contrasting with
the finding in the aforementioned analytical and finite element models, that suggesting a
triangular beam is a better beam structure for energy harvesting system. However, this con-
trast is mainly due to the difference in the size of the piezoelectric bimorph actuators used
in the experiment. Comparing the power density for the two cantilevers, which have effec-
tive material volumes of 721.7 mm3 (44.5× 31.8× 0.51 mm) and 56.1 mm3 (1/2× 20×
11× 0.51 mm), respectively, produces the frequency responses shown in Fig. 13(b). After
normalizing the output power, the triangular beam is seen to record a higher output power
density than the rectangular beam. The peak normalized power densities (NPD) are obtained
as 2.19 µW/mm3 and 4.05 µW/mm3 for the rectangular and triangular beam respectively,
which is agree with the finding of the analytical and finite element models, triangular beam
will produces higher output power than the rectangular beam. To further clarifying the com-
parison, Table 4 is created to summarize the maximum output power, beam volume and
normalized power density (NPD) of both beams under test in this experiment. Roundy et al.
[11] claimed that with the same volume of PZT and an increasingly triangular trapezoidal
profile to the beam, the strain distribution can be made more even. Hence, an ultimate trape-
zoidal geometry (triangle) beam can produce twice the power (per unit volume of PZT) than
the conventional rectangular geometry beam. However, less than twice energy was obtained
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Table 4 Summary of comparison between triangular and rectangular beams

Shape Maximum Output Power (mW) Volume (mm3) Normalized Power Densities
(NPD, µW/mm3)

Rectangular 1.58 721 2.19
Triangular 0.23 56.1 4.05

Fig. 13 Comparison of output from rectangular and triangular beam (a) initiate and (b) normalized output
power

in this experiment (4.05/2.19 = 1.85). This may be caused by the imperfection of the tri-
angular profile of the structure during the shearing process, which was completed manually
instead of using machine cutting.

5 Conclusion

This paper presents the strain distribution analysis of five cantilever structures that come
with different geometric configurations, including an elliptically profiled beams that never
been considered in any prior literature. Analytical and finite element models of the structures
under test are implemented in MATLAB solver and ANSYS finite element analysis respec-
tively. All the strain values on the investigated nodes from each structures are computed and
normalized so that the results obtained from different set of models can be compared and
the structure with a greater average strain can be determined. The results recorded from both
models are comparable in the sense of the behavior: both models suggested that a triangular
shape (structure 3) cantilever beam is the best geometry to improve the output power for
vibration-based energy harvester. The triangular structure not only maximizes the material
average strain for a given input, but also improves the robustness by reducing stress concen-
tration on the cantilever beam. With this improvement, both size and cost of a system can be
greatly reduced. Although the results show that a concave elliptical profiled beam (structure
5) look very promising in term of its output power as compared to any other structures under
tested, numerical tabulation still conveys that structure 3 gives the best average strain distri-
bution according to the percentage of the nodes, thus filling a gap in the literature to conclude
that triangular beam is still better than an elliptical profiled beams that yet to be considered
in any of the previous studies. Not to mention the cost to fabricate a triangular structure can
be relatively lower as compared to an elliptical beams structure shape that is more complex.
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Lastly, this finding is also supported by the experimental outcome, which clearly proved
that a triangular geometry can definitely produces greater power density (NPD) than the or-
dinary rectangular geometry. There is roughly 85 % of power density improvement recorded
from the triangular beam as compared to the conventional rectangular beam, due to a greater
average strain in the beam material.
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