65 research outputs found

    Characterization of cohesive powders for bulk handling and DEM modelling

    Get PDF
    The flow behaviour of granular materials is relevant for many industrial applications including the pharmaceutical, chemical, consumer goods and food industries. A key issue is the accurate characterisation of these powders under different loading conditions and flow regimes, for example in mixers, pneumatic conveyors and silo filling and discharge. This paper explores the experimental aspects of cohesive powder handling at different compaction levels and flow regimes, namely inertial and quasi-static regimes. So far, laboratory element test set-ups capable of defining the full stress states at very low compaction levels have not been fully explored in literature. In contrast the mechanical behaviour of cohesive powders under relatively high consolidation stress (several kPa upward) can be carefully measured using element tests such as biaxial test, true triaxial and hollow cylinder tests. However in practice these tests are expensive and slow to conduct and are almost never performed for many industrial applications requiring material characterisation. Here we investigate simpler techniques that could be used for filling this important gap with the focus of providing test data for model calibration and simulation validation in line with the spirit of the European Commission funded PARDEM Marie Curie ITN Project. We perform particle and bulk characterisation on limestone powder with 4.7μm and 31.3 μm mean particle size, detergent powder with differences in formulation, cocoa powder with low and high fat content - relevant for different industrial applications. Of particular significance is the 4.7μm limestone powder which is the PARDEM reference powder that have been created and extensively used in a collaborative European PARDEM Project (www.pardem.eu). In the inertial, low consolidation stress regimes - more relevant for powder transport and conveying applications - we present experimental findings on the flowability and avalanching behaviour of the reference material in a rotating drum. On the other hand, in the quasi-static, higher consolidation regime, we perform shear tests with the Edinburgh Powder Tester (EPT), an extended uniaxial tester and the commercially available Freeman FT4 Powder Rheometer. For macroscopic quantities, we report the unconfined yield strength as a function of applied stress. These material characteristics provide important scientific insights for developing innovative solutions for cohesive powder handling problems. From these experiments and for best practice guideline, we highlight subtle issues associated with the experimental setup and measurements. The experiments lead to a rich quantitative description of the flow behaviour and failure properties of the materials which provide the material data for DEM model calibration and validation

    Characterisation of cohesive powders for bulk handling and DEM modelling

    Get PDF
    The flow behaviour of granular materials is relevant for many industrial applications including the pharmaceutical, chemical, consumer goods and food industries. A key issue is the accurate characterisation of these powders under different loading conditions and flow regimes, for example in mixers, pneumatic conveyors and silo filling and discharge. This paper explores the experimental aspects of cohesive powder handling at different compaction levels and flow regimes, namely inertial and quasi-static regimes. So far, laboratory element test set-ups capable of defining the full stress states at very low compaction levels have not been fully explored in literature. In contrast the mechanical behaviour of cohesive powders under relatively high consolidation stress (several kPa upward) can be carefully measured using element tests such as biaxial test, true triaxial and hollow cylinder tests. However in practice these tests are expensive and slow to conduct and are almost never performed for many industrial applications requiring material characterisation. Here we investigate simpler techniques that could be used for filling this important gap with the focus of providing test data for model calibration and simulation validation in line with the spirit of the European Commission funded PARDEM Marie Curie ITN Project. We perform particle and bulk characterisation on limestone powder with 4.7µm and 31.3 µm mean particle size, detergent powder with differences in formulation, cocoa powder with low and high fat content - relevant for different industrial applications. Of particular significance is the 4.7µm limestone powder which is the PARDEM reference powder that have been created and extensively used in a collaborative European PARDEM Project (www.pardem.eu). In the inertial, low consolidation stress regimes - more relevant for powder transport and conveying applications - we present experimental findings on the flowability and avalanching behaviour of the reference material in a rotating drum. On the other hand, in the quasi-static, higher consolidation regime, we perform shear tests with the Edinburgh Powder Tester (EPT), an extended uniaxial tester and the commercially available Freeman FT4 Powder Rheometer. For macroscopic quantities, we report the unconfined yield strength as a function of applied stress. These material characteristics provide important scientific insights for developing innovative solutions for cohesive powder handling problems. From these experiments and for best practice guideline, we highlight subtle issues associated with the experimental setup and measurements. The experiments lead to a rich quantitative description of the flow behaviour and failure properties of the materials which provide the material data for DEM model calibration and validation

    Impact of membrane pore structure on protein detection sensitivity of affi nity-based immunoassay

    Get PDF
    Understanding a membrane’s morphology is important for controlling its fi nal performance during protein immobilization. Porous, symmetric membranes were prepared from a polyvinylidene fl uoride/N-methyl-2-pyrrolidinone solution by phase inversion process, to obtain membrane with various microsized pores. The concentration and surface area of aprotein dotted on the membrane surface were measured by staining with Ponceau S dye. The dotted protein was further scanned and analysed to perform quantitative measurements for relative comparison. The intensity of the red protein spot and its surface area varied depending on the membrane pore size, demonstrating the dependence of protein immobilization on this factor. The membrane with the smallest pore size (M3) showed the highest protein spot intensity and surface area when examined at different protein concentrations. An increase in the applied protein volume showed a linearity proportional trend to the total surface area, and an uneven round dot shape was observed at a large applied volume of protein solution

    Molecular epidemiology of Coxsackievirus A6 in Sarawak, Malaysian Borneo, from 2000 to 2015

    Get PDF
    Hand, foot and mouth disease (HFMD) affects mostly children with millions of infections notified every year particularly in Asia. In the last decade, Coxsackievirus A6 (CVA-6) has emerged as an important pathogen in HFMD epidemics replacing CVA-16 as a predominant serotype associated with uncomplicated HFMD. In Sarawak, CVA-6 has been detected since 2000. However a comprehensive study on the circulation of this virus has not been carried out to date. In this study, we investigated the molecular epidemiology of CVA-6 in Sarawak from 2000 to 2015 associated with HFMD

    Aedes larval population dynamics and risk for dengue epidemics in Malaysia

    Get PDF
    Early detection of a dengue outbreak is an important first step towards implementing effective dengue interventions resulting in reduced mortality and morbidity.A dengue mathematical model would be useful for the prediction of an outbreak and evaluation of control measures.However, such a model must be carefully parameterized and validated with epidemiological, ecological and entomological data.A field study was conducted to collect and analyse various parameters to model dengue transmission and outbreak.Dengue-prone areas in Kuala Lumpur, Pahang, Kedah and Johor were chosen for this study.Ovitraps were placed outdoor and used to determine the effects of meteorological parameters on vector breeding.Vector population in each area was monitored weekly for 87 weeks.Weather stations, consisting of a temperature and relative humidity data logger and an automated rain gauge, were installed at key locations in each study site.Correlation and Autoregressive Distributed Lag (ADL) model were used to study the relationship among the variables. Previous week rainfall plays a significant role in increasing the mosquito population, followed by maximum humidity and temperature. The secondary data of rainfall, temperature and humidity provided by the meteorological department showed an insignificant relationship with the mosquito population compared to the primary data recorded by the researchers.A well fit model was obtained for each locality to be used as a predictive model to foretell possible outbreak

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Epidemiology of sick building syndrome and its associated risk factors in Singapore

    No full text
    Occupational and Environmental Medicine553188-193OEME

    Piers: An efficient model for similarity search in DNA sequence databases

    No full text
    SIGMOD Record33239-44SREC
    corecore