2,433 research outputs found

    Supervised and Unsupervised Detections for Multiple Object Tracking in Traffic Scenes: A Comparative Study

    Full text link
    In this paper, we propose a multiple object tracker, called MF-Tracker, that integrates multiple classical features (spatial distances and colours) and modern features (detection labels and re-identification features) in its tracking framework. Since our tracker can work with detections coming either from unsupervised and supervised object detectors, we also investigated the impact of supervised and unsupervised detection inputs in our method and for tracking road users in general. We also compared our results with existing methods that were applied on the UA-Detrac and the UrbanTracker datasets. Results show that our proposed method is performing very well in both datasets with different inputs (MOTA ranging from 0:3491 to 0:5805 for unsupervised inputs on the UrbanTracker dataset and an average MOTA of 0:7638 for supervised inputs on the UA Detrac dataset) under different circumstances. A well-trained supervised object detector can give better results in challenging scenarios. However, in simpler scenarios, if good training data is not available, unsupervised method can perform well and can be a good alternative.Comment: Accepted for ICIAR 202

    In vitro responses of dracaena fragrans cv. massangeana to growth regulators

    Get PDF
    In vitro studies on Dracaena fragrans cv. Massangeana revealed that young stem segments were capable of proliferating shoots on agar-solidified Murashige and Skoog (MS) basal medium containing different combinations and concentrations of BAP and NAA. Highest percentage of explants forming shoots was obtained on medium supplemented with 3.0 mgll BAP and 0.1 mgll NAA. The highest number ofshoots per explant occurred on medium containing 2.0 mgll BAP only. Highest percentage of callus formation and highest mean fresh weight of callus from young stem segments were achieved on MS medium supplemented with 1.0 mgll2,4-D. Adventitious rooting occurred after transferring excised shoots onto a hormone-free MS medium. Rooting was 100% for shoots derived from media with 0-2.0 mg/l BAP and a relatively low concentration of NAA (0.1 mg/l)

    Gravitational radiation from nonaxisymmetric spherical Couette flow in a neutron star

    Get PDF
    The gravitational wave signal generated by global, nonaxisymmetric shear flows in a neutron star is calculated numerically by integrating the incompressible Navier--Stokes equation in a spherical, differentially rotating shell. At Reynolds numbers \Rey \gsim 3 \times 10^{3}, the laminar Stokes flow is unstable and helical, oscillating Taylor--G\"ortler vortices develop. The gravitational wave strain generated by the resulting kinetic-energy fluctuations is computed in both ++ and ×\times polarizations as a function of time. It is found that the signal-to-noise ratio for a coherent, 10810^{8}-{\rm s} integration with LIGO II scales as 6.5(Ω/104rads1)7/2 6.5 (\Omega_*/10^{4} {\rm rad} {\rm s}^{-1})^{7/2} for a star at 1 {\rm kpc} with angular velocity Ω\Omega_*. This should be regarded as a lower limit: it excludes pressure fluctuations, herringbone flows, Stuart vortices, and fully developed turbulence (for \Rey \gsim 10^{6}).Comment: (1) School of Physics, University of Melbourne, Parkville, VIC 3010, Australia. (2) Departamento de Fisica, Escuela de Ciencias,Universidad de Oriente, Cumana, Venezuela, (3) Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia. Accepted for publication in The Astrophysical Journal Letter

    Rotational Cooling of Polar Molecules by Stark-tuned Cavity Resonance

    Get PDF
    A general scheme for rotational cooling of diatomic heteronuclear molecules is proposed. It uses a superconducting microwave cavity to enhance the spontaneous decay via Purcell effect. Rotational cooling can be induced by sequentially tuning each rotational transition to cavity resonance, starting from the highest transition level to the lowest using an electric field. Electrostatic multipoles can be used to provide large confinement volume with essentially homogeneous background electric field.Comment: 10 pages, 6 figure

    Global three-dimensional flow of a neutron superfluid in a spherical shell in a neutron star

    Full text link
    We integrate for the first time the hydrodynamic Hall-Vinen-Bekarevich-Khalatnikov equations of motion of a 1S0^{1}S_{0}-paired neutron superfluid in a rotating spherical shell, using a pseudospectral collocation algorithm coupled with a time-split fractional scheme. Numerical instabilities are smoothed by spectral filtering. Three numerical experiments are conducted, with the following results. (i) When the inner and outer spheres are put into steady differential rotation, the viscous torque exerted on the spheres oscillates quasiperiodically and persistently (after an initial transient). The fractional oscillation amplitude (102\sim 10^{-2}) increases with the angular shear and decreases with the gap width. (ii) When the outer sphere is accelerated impulsively after an interval of steady differential rotation, the torque increases suddenly, relaxes exponentially, then oscillates persistently as in (i). The relaxation time-scale is determined principally by the angular velocity jump, whereas the oscillation amplitude is determined principally by the gap width. (iii) When the mutual friction force changes suddenly from Hall-Vinen to Gorter-Mellink form, as happens when a rectilinear array of quantized Feynman-Onsager vortices is destabilized by a counterflow to form a reconnecting vortex tangle, the relaxation time-scale is reduced by a factor of 3\sim 3 compared to (ii), and the system reaches a stationary state where the torque oscillates with fractional amplitude 103\sim 10^{-3} about a constant mean value. Preliminary scalings are computed for observable quantities like angular velocity and acceleration as functions of Reynolds number, angular shear, and gap width. The results are applied to the timing irregularities (e.g., glitches and timing noise) observed in radio pulsars.Comment: 6 figures, 23 pages. Accepted for publication in Astrophysical Journa

    Controlling laser spectra in a phaseonium photonic crystal using maser

    Full text link
    We study the control of quantum resonances in photonic crystals with electromagnetically induced transparency driven by microwave field. In addition to the control laser, the intensity and phase of the maser can alter the transmission and reflection spectra in interesting ways, producing hyperfine resonances through the combined effects of multiple scattering in the superstructure.Comment: 7 pages, 4 figure

    Vortex Matter Transition in Bi2{}_2Sr2{}_2CaCu2{}_2O8+y{}_{8+y} under Tilted Fields

    Full text link
    Vortex phase diagram under tilted fields from the cc axis in Bi2{}_2Sr2{}_2CaCu2{}_2O8+y{}_{8+y} is studied by local magnetization hysteresis measurements using Hall probes. When the field is applied at large angles from the cc axis, an anomaly (HpH_p^\ast) other than the well-known peak effect (HpH_p) are found at fields below HpH_p. The angular dependence of the field HpH_p^\ast is nonmonotonic and clearly different from that of HpH_p and depends on the oxygen content of the crystal. The results suggest existence of a vortex matter transition under tilted fields. Possible mechanisms of the transition are discussed.Comment: Revtex, 4 pages, some corrections are adde

    Characterization of a Plain Broadband Textile PIFA

    Get PDF
    Bandwidth characteristic of a wearable antenna is one of the major factors in determining its usability on the human body. In this work, a planar inverted-F antenna (PIFA) structure is proposed to achieve a large bandwidth to avoid serious antenna reflection coefficient detuning when placed in proximity of the body. The proposed structure is designed based on a simple structure, in order to provide practicality in application and maintain fabrication simplicity. Two different types of conductive textiles, namely Pure Copper Polyester Taffeta Fabric (PCPTF) and ShieldIt, are used in order to proof its concept, in comparison with a metallic antenna made from copper foil. The design is spaced and fabricated using a 6 mm thick fleece fabric. To cater for potential fabrication and material measurement inaccuracies, both antennas' performance are also investigated and analyzed with varying physical and material parameters. From this investigation, it is found that the proposed structure's extended bandwidth enabled the antenna to function with satisfactory on-body reflection coefficients, despite unavoidable gain and efficiency reduction

    Hydrogels that listen to cells:a review of cell-responsive strategies in biomaterial design for tissue regeneration

    Get PDF
    The past decade has seen a decided move from static and passive biomaterials to biodegradable, dynamic, and stimuli responsive materials in the laboratory and the clinic. Recent advances towards the rational design of synthetic cell-responsive hydrogels-biomaterials that respond locally to cells or tissues without the input of an artificial stimulus-have provided new strategies and insights on the use of artificial environments for tissue engineering and regenerative medicine. These materials can often approximate responsive functions of a cell's complex natural extracellular environment, and must respond to the small and specific stimuli provided within the vicinity of a cell or tissue. In the current literature, there are three main cell-based stimuli that can be harnessed to create responsive hydrogels: (1) enzymes (2) mechanical force and (3) metabolites/small molecules. Degradable bonds, dynamic covalent bonds, and non-covalent or supramolecular interactions are used to provide responsive architectures that enable features ranging from cell selective infiltration to control of stem-cell differentiation. The growing ability to spatiotemporally control the behavior of cells and tissue with rationally designed responsive materials has the ability to allow control and autonomy to future generations of materials for tissue regeneration, in addition to providing understanding and mimicry of the dynamic and complex cellular niche
    corecore