3,075 research outputs found
Price Formation under Small Numbers Competition: Evidence from Land Auctions in Singapore
This paper examines the price formation process under small numbers competition using data from Singapore land auctions. The theory predicts that bid prices are less than the zero-profit asset value in these first-price sealed-bid auctions. The model also shows that expected sales price increases with the number of bidders both because each bidder has an incentive to offer a higher price and because of a greater likelihood that a high-value bidder is present. The empirical estimates are consistent with auction theory and show that the standard land attributes are reflected in auction prices as expected. Working Paper No. 04-0
Rotational Cooling of Polar Molecules by Stark-tuned Cavity Resonance
A general scheme for rotational cooling of diatomic heteronuclear molecules
is proposed. It uses a superconducting microwave cavity to enhance the
spontaneous decay via Purcell effect. Rotational cooling can be induced by
sequentially tuning each rotational transition to cavity resonance, starting
from the highest transition level to the lowest using an electric field.
Electrostatic multipoles can be used to provide large confinement volume with
essentially homogeneous background electric field.Comment: 10 pages, 6 figure
Gravitational radiation from nonaxisymmetric spherical Couette flow in a neutron star
The gravitational wave signal generated by global, nonaxisymmetric shear
flows in a neutron star is calculated numerically by integrating the
incompressible Navier--Stokes equation in a spherical, differentially rotating
shell. At Reynolds numbers \Rey \gsim 3 \times 10^{3}, the laminar Stokes
flow is unstable and helical, oscillating Taylor--G\"ortler vortices develop.
The gravitational wave strain generated by the resulting kinetic-energy
fluctuations is computed in both and polarizations as a function
of time. It is found that the signal-to-noise ratio for a coherent,
-{\rm s} integration with LIGO II scales as for a star at 1 {\rm kpc} with angular velocity
. This should be regarded as a lower limit: it excludes pressure
fluctuations, herringbone flows, Stuart vortices, and fully developed
turbulence (for \Rey \gsim 10^{6}).Comment: (1) School of Physics, University of Melbourne, Parkville, VIC 3010,
Australia. (2) Departamento de Fisica, Escuela de Ciencias,Universidad de
Oriente, Cumana, Venezuela, (3) Department of Mechanical Engineering,
University of Melbourne, Parkville, VIC 3010, Australia. Accepted for
publication in The Astrophysical Journal Letter
Global three-dimensional flow of a neutron superfluid in a spherical shell in a neutron star
We integrate for the first time the hydrodynamic
Hall-Vinen-Bekarevich-Khalatnikov equations of motion of a -paired
neutron superfluid in a rotating spherical shell, using a pseudospectral
collocation algorithm coupled with a time-split fractional scheme. Numerical
instabilities are smoothed by spectral filtering. Three numerical experiments
are conducted, with the following results. (i) When the inner and outer spheres
are put into steady differential rotation, the viscous torque exerted on the
spheres oscillates quasiperiodically and persistently (after an initial
transient). The fractional oscillation amplitude () increases
with the angular shear and decreases with the gap width. (ii) When the outer
sphere is accelerated impulsively after an interval of steady differential
rotation, the torque increases suddenly, relaxes exponentially, then oscillates
persistently as in (i). The relaxation time-scale is determined principally by
the angular velocity jump, whereas the oscillation amplitude is determined
principally by the gap width. (iii) When the mutual friction force changes
suddenly from Hall-Vinen to Gorter-Mellink form, as happens when a rectilinear
array of quantized Feynman-Onsager vortices is destabilized by a counterflow to
form a reconnecting vortex tangle, the relaxation time-scale is reduced by a
factor of compared to (ii), and the system reaches a stationary state
where the torque oscillates with fractional amplitude about a
constant mean value. Preliminary scalings are computed for observable
quantities like angular velocity and acceleration as functions of Reynolds
number, angular shear, and gap width. The results are applied to the timing
irregularities (e.g., glitches and timing noise) observed in radio pulsars.Comment: 6 figures, 23 pages. Accepted for publication in Astrophysical
Journa
Vortex Matter Transition in BiSrCaCuO under Tilted Fields
Vortex phase diagram under tilted fields from the axis in
BiSrCaCuO is studied by local magnetization
hysteresis measurements using Hall probes. When the field is applied at large
angles from the axis, an anomaly () other than the well-known
peak effect () are found at fields below . The angular dependence of
the field is nonmonotonic and clearly different from that of
and depends on the oxygen content of the crystal. The results suggest existence
of a vortex matter transition under tilted fields. Possible mechanisms of the
transition are discussed.Comment: Revtex, 4 pages, some corrections are adde
Correlation Between Polymer Packing And Gas Transport Properties For Co2/N2 Separation In Glassy Fluorinated Polyimide Membrane
Gas separation performance of a membrane highly hinges on its physical properties. In this study, the interplay between polymer packing of a membrane and its gas transport behaviours (permeability and selectivity) was investigated through a series of 6FDA-DAM:DABA (3:2) polyimide membranes with different polymer compactness. The chemical structure and the polymer packing of the resulting membrane were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and packing density measurement, respectively. CO2/N2 separation efficiency of the membrane was evaluated at 25oC with feed pressure up to 6 bar. N2 permeability was found to rely on the membrane’s packing density, which signified its greater dependence on molecular sieving. In contrast, sorption showed a more vital role in determining the CO2 permeability. In this work, the membrane with a final thickness of 97±2 μm had successfully surpassed the Robeson’s 2008 upper bound plot with a CO2 permeability of 83 Barrer and CO2/N2 selectivity of 97 at 3 bar permeation
Evidence for Surface Andreev Bound states in Cuprate Superconductors from Penetration Depth Measurements
Tunneling and theoretical studies have suggested that Andreev bound states
form at certain surfaces of unconventional superconductors. Through studies of
the temperature and field dependence of the in-plane magnetic penetration depth
lambda_ab at low temperature, we have found strong evidence for the presence of
these states in clean single crystal YBCO and BSCCO. Crystals cut to expose a
[110] interface show a strong upturn in lambda_ab at around 7K, when the field
is oriented so that the supercurrents flow around this surface. In YBCO this
upturn is completely suppressed by a field of ~0.1 T.Comment: 4 pages 2 column revtex + 4 postscript figures. Submitted to PR
Controlling laser spectra in a phaseonium photonic crystal using maser
We study the control of quantum resonances in photonic crystals with
electromagnetically induced transparency driven by microwave field. In addition
to the control laser, the intensity and phase of the maser can alter the
transmission and reflection spectra in interesting ways, producing hyperfine
resonances through the combined effects of multiple scattering in the
superstructure.Comment: 7 pages, 4 figure
Glycerol residue - a rich source of glycerol and medium chain fatty acids
Glycerol residue, a by-product of glycerol refining from a palm kernel oil methyl ester plant, was found to be a good source of glycerol and medium chain fatty acids. From analyses of twelve samples, it was found to contain, on average, 20.2 % glycerol and 6.6 % fatty acids. The fatty acids comprised mainly C8:0 (30.3 %), C10:0 (9.4 %) and C12:0 (40.8 %)
Metropolis simulations of Met-Enkephalin with solvent-accessible area parameterizations
We investigate the solvent-accessible area method by means of Metropolis
simulations of the brain peptide Met-Enkephalin at 300. For the energy
function ECEPP/2 nine atomic solvation parameter (ASP) sets are studied. The
simulations are compared with one another, with simulations with a distance
dependent electrostatic permittivity , and with vacuum
simulations (). Parallel tempering and the biased Metropolis
techniques RM are employed and their performance is evaluated. The measured
observables include energy and dihedral probability densities (pds), integrated
autocorrelation times, and acceptance rates. Two of the ASP sets turn out to be
unsuitable for these simulations. For all other systems selected configurations
are minimized in search of the global energy minima, which are found for the
vacuum and the system, but for none of the ASP models. Other
observables show a remarkable dependence on the ASPs. In particular, we find
three ASP sets for which the autocorrelations at 300K are considerably
smaller than for vacuum simulations.Comment: 10 pages and 8 figure
- …
