4 research outputs found

    The histamine system and cognitive function: An in vivo H3 receptor PET imaging study in healthy volunteers and patients with schizophrenia

    No full text
    Background: The histamine-3 receptor (H3R) is an auto- and heteroreceptor that inhibits the release of histamine and other neurotransmitters. Post-mortem evidence has found altered H3R expression in patients with psychotic disorders, which may underlie cognitive impairment associated with schizophrenia (CIAS). Aims: We used positron emission tomography (PET) imaging to compare brain uptake of an H3R selective tracer between patients with schizophrenia and matched controls (healthy individuals). Regions of interest included the dorsolateral prefrontal cortex (DLPFC) and striatum. We explored correlations between tracer uptake and symptoms, including cognitive domains. Methods: A total of 12 patients and 12 matched controls were recruited to the study and were assessed with psychiatric and cognitive rating scales. They received a PET scan using the H3R-specific radioligand [11C]MK-8278 to determine H3R availability. Results: There was no statistically significant difference in tracer uptake between patients and controls in the DLPFC (t19 = 0.79, p = 0.44) or striatum (t21 = 1.18, p = 0.25). An exploratory analysis found evidence for lower volume of distribution in the left cuneus (pFWE-corrected = 0.01). DLPFC tracer uptake was strongly correlated with cognition in controls (trail making test (TMT) A: r = 0.77, p = 0.006; TMT B: rho = 0.74, p = 0.01), but not in patients (TMT A: r = −0.18, p = 0.62; TMT B: rho = −0.06, p = 0.81). Conclusions: These findings indicate H3R in the DLPFC might play a role in executive function and this is disrupted in schizophrenia in the absence of major alterations in H3R availability as assessed using a selective radiotracer for H3R. This provides further evidence for the role of H3R in CIAS

    Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats

    No full text
    Synaptic dysfunction is hypothesised to play a key role in schizophrenia pathogenesis, but this has not been tested directly in vivo. Here, we investigated synaptic vesicle glycoprotein 2A (SV2A) levels and their relationship to symptoms and structural brain measures using [ 11 C]UCB-J positron emission tomography in 18 patients with schizophrenia and 18 controls. We found significant group and group-by-region interaction effects on volume of distribution (VT). [11 C]UCB-J VT was significantly lower in the frontal and anterior cingulate cortices in schizophrenia with large effect sizes (Cohen’s d = 0.8-0.9), but there was no significant difference in the hippocampus. We also investigated the effects of antipsychotic drug administration on SV2A levels in Sprague-Dawley rats using western blotting, [3 H]UCB-J autoradiography and immunostaining with confocal microscopy, finding no significant effects on any measure. These findings indicate that there are lower synaptic terminal protein levels in schizophrenia in vivo and that antipsychotic drug exposure is unlikely to account for them
    corecore