26 research outputs found

    3層グラフェン/LiNbO3界面における音波伝搬特性

    Get PDF
    第40回超音波エレクトロニクスの基礎と応用に関するシンポジウム/The 40th Symposium on UltraSonic Electronics (USE2019), 2019年11月25日~27日, 明治大学, 東

    A study of polybromide chain formation using carbon nanomaterials via density functional theory approach

    Get PDF
    \ua9 2016 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. We use a density functional theory approach under the local density approximation (DFT/LDA) to describe the formation of polybromide chain structures, their stretching frequency modes and charge transfer induced by the interaction of these molecules with a graphene sheet. In many cases, we find polybromides to be more thermodynamically stable than the equivalent Br2 molecular structures adsorbed on graphene sheet. This results in lower frequency stretch modes at around 170–190 cm−1. We propose that these are rarely observed experimentally due to the bromination techniques used, which introduces molecular Br2 into the carbon host material. Charge transfer with their host material means that these molecules and their associated hole charge in the neighbouring carbon materials, are then coulombically repelled from other bromine molecules which acts as a barrier to combination into polybromides. Our calculated barrier for polybromide formation (2Br2→Br4) on a graphene sheet was 0.35 eV which is an exothermic process with an enthalpy value of −0.28 eV. Therefore, thermodynamically, chain polybromide formation seems to be favourable but kinetically, is unlikely, since there is an activation barrier that needs to be overcome to give stable bromine chain structures

    Light-soaking tests of zinc oxide photoanodes sensitized with an indoline dye on different transparent conductive substrates

    No full text
    Dye-sensitized solar cells (DSCs) were prepared using porous zinc oxide (ZnO) films on aluminum-doped zinc oxide (AZO) and fluorine-doped tin oxide (FTO) transparent conductive glass substrates. X-ray diffraction measurements revealed that, the porous ZnO films were crystallographically oriented differently on the two transparent substrates. The two DSCs were prepared using metal-free indoline dye as the sensitizer and a liquid electrolyte as the hole conductor. Measurements of the power conversion efficiency of the two DSCs over a period of time showed deterioration in the conversion efficiency of the DSCs with the deterioration being faster in ZnO/FTO than ZnO/AZO. The deterioration is attributed mainly to the decrease in light-harvesting ability of the sensitizer and recombination of photo-excited electrons resulting in the decrease in the short-circuit photocurrent densities and the open-circuit voltages in both DSCs during the light-soaking process

    A Comparative Study of Antibacterial Activity of CuO/Ag and ZnO/Ag Nanocomposites

    No full text
    The synergistic effects of transition metal based nanocomposites are known to possess enhanced antibacterial activities. However, in-depth analysis of the relative antibacterial performance of some of the prominent nanocomposites remains unavailable. This study compares the antibacterial activity of two separate nanocomposites, which are copper oxide with silver (CuO/Ag) and zinc oxide with silver (ZnO/Ag). The individual CuO/Ag and ZnO/Ag nanocomposites were synthesised by a mixed wet-chemical method. The resulting particles were analysed by XRD, XRF, TEM, UV-Vis spectrophotometer, BET, and FTIR. The antibacterial activity of the nanoparticles were tested on Gram-negative and Gram-positive bacteria, Escherichia coli (ATCC25922) and Staphylococcus aureus (ATCC25923), respectively, using the Kirby–Bauer disc diffusion and the microdilution methods. The Kirby–Bauer disc diffusion test results had the same minimum inhibition concentration (MIC) value for both CuO/Ag and ZnO/Ag against E. coli and S. aureus, which was 0.25 mg/ml. The applied nanocomposites using microdilution showed that CuO/Ag had approximately 98.8% and 98.7% efficiency on the respective Gram-positive and Gram-negative bacterial species, while ZnO/Ag achieved 91.7% and 89.3% efficiency, respectively, against the Gram-positive and Gram-negative bacterial species. This study presents a novel approach for relative analysis of the performance efficiency of transition metal based nanocomposites

    A comparative study of DFT/LDA with higher levels of theory on π-π interactions: A typical case for the benzene dimer

    No full text
    Abstract The description of the interactions involving species that have π-π configuration presents a real challenge in utilizing theoretical calculations. The problem arises from the kind of theoretical approaches employed to describe the nature of these non-covalent interactions. Various workers have described the interactions purely as Van der Waals, whilst others consider it as a competition between many other Pi-pi interactions; a typical case for the benzene-dimer forces. Present approaches describing these interaction effects are computationally expensive. We report a pseudopotential base density functional theory (DFT) calculations within the local density approximation (LDA) and compared our results with other higher theories describing the π-π stacking interactions. By using benzene dimer as a prototype species, we find that, DFT/LDA compares favourably well with other descriptions as a reliable alternative method

    Acoustic wave propagation at a 3-layered graphene/LiNbO3 interface

    No full text
    第40回超音波エレクトロニクスの基礎と応用に関するシンポジウム/The 40th Symposium on UltraSonic Electronics (USE2019), 2019年11月25日~27日, 明治大学, 東

    The effect of NaOH catalyst concentration and extraction time on the yield and properties of Citrullus vulgaris seed oil as a potential biodiesel feed stock

    No full text
    In this work, oil was extracted from Citrullus vulgaris (watermelon) seeds for potential feedstock in biodiesel production. The results showed that, the oil content from Citrullus vulgaris seeds oil during extraction reached an average yield of 50%. Biodiesel was produced via transesterification using NaOH as catalyst. The effect of NaOH on the yield of the biodiesel was investigated at three different concentrations; 0.13, 0.15 and 0.18 g and oil to methanol ratio of 5:1 under different reaction times; 90, 120 and 150 min at 60 °C. The yield of biodiesel from NaOH concentration of 0.13 g was found to be 70% as compared to those of concentrations, 0.15 g and 0.18 g which were 53% and 49% respectively.Gas chromatography was used to identify the methyl ester groups present in the biodiesel and the results revealed both concentration and time-dependent increase in oil yield. The physicochemical properties of the watermelon seed oil such as flash point (141.3 ± 0.4–143.4 ± 0.2), density (0.86 ± 0.04–0.91 ± 0.01 g/cm3), kinematic viscosity (30.50 ± 0.1–31.20 ± 0.04 mm2/s) and acid value (mg KOH/g) are similar to conventional vegetable oils. This work therefore, highlights the potential utility of water melon seeds for biodiesel production. Keywords: Citrullus vulgaris, Gas chromatography, Catalys
    corecore