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E.K.K. Abavare4, Ali Hassanali5 and P.R. Briddon6

Abstract: We use a density functional theory approach under the local density ap-
proximation (DFT/LDA) to describe the formation of polybromide chain structures, 
their stretching frequency modes and charge transfer induced by the interaction of 
these molecules with a graphene sheet. In many cases, we find polybromides to be 
more thermodynamically stable than the equivalent Br2 molecular structures ad-
sorbed on graphene sheet. This results in lower frequency stretch modes at around 
170–190 cm−1. We propose that these are rarely observed experimentally due to the 
bromination techniques used, which introduces molecular Br2 into the carbon host 
material. Charge transfer with their host material means that these molecules and 
their associated hole charge in the neighbouring carbon materials, are then coulom-
bically repelled from other bromine molecules which acts as a barrier to combina-
tion into polybromides. Our calculated barrier for polybromide formation (2Br2→Br4) 
on a graphene sheet was 0.35 eV which is an exothermic process with an enthalpy 
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value of −0.28 eV. Therefore, thermodynamically, chain polybromide formation 
seems to be favourable but kinetically, is unlikely, since there is an activation barrier 
that needs to be overcome to give stable bromine chain structures.

Subjects: Material Science; Physics; Engineering & Technology

Keywords: DFT; LDA; polybromides; carbon nanomaterials

1. Introduction
Bromination has been studied extensively in the 1940s as a separation technique for layers in graphite 
and tubes, such as nanotube bundles, as well as a highly effective electron acceptor. While many ex-
perimental characterisation studies have been performed (notably Raman spectroscopy), there have 
only been a few theoretical descriptions of the bromination process and resultant hybrid structures 
reported in literature (Bulusheva et al., 2012; Strauch, Anis, & Kuntscher, 2014; Yaya et al., 2011).

There are multiple phases of the standard halides. In the gas and liquid phase, they consist of dia-
tomic molecules. The corresponding solid halogen acid acceptor compounds (Cl2, Br2, I2) belong to 
the space group D2h–Cmca, with two molecules in the primitive unit cell. However, as well as the dia-
tomic species, halides are able to form chain structures. The ability for these halides to form chains 
decreases in the order I > Br > Cl (Dunitz, 1973). The clusters of the heavier halogens bromine and 
iodine, easily form larger hetero and homo-atomic aggregates stabilized by charge delocalization. 
On the other hand, similar clusters of Cl and F have hardly been reported, mainly due to their high 
volatility and reactivity.

Polyiodide chain structures such as (I2−
4

, I−
5
, I−
7
, up to I3−

29
) which results by the interactions of I−, I2 

and I−
3
 building units, were observed in extended polymer networks (Chen et al., 1996; Lippitz, 

Friedrich, & Unger, 2013), with characteristic vibrational features reflected in their Raman response 
(Deplano, Ferraro, Mercuri, & Trogu, 1999). In addition, linear or bent chains of polyiodide consisting 
of several atoms have also been synthesized (Bretstovisky, Kirowa-Eisner, & Gileadi, 1986) and are 
significant in halogen doped organic systems in which high temperature superconducting transi-
tions in the organic systems is associated with the iodine chains (Burns & Renner, 1991).

Polybromide chains of (Br−
2
, Br−

3
, Br−2

4
, Br−

5
, Br2−

8
) have been characterised in various polymers and 

metal complexes (Jerman et al., 2008; Sharp & Gellene, 1997; Vogt, Wulff-Molder, & Meisel, 1996) 
and it is suggested that bromine undergoes interactions whose nature and orientation are similar to 
the much studied chains of polyiodides.

Recent theoretical studies suggest that at higher concentration of bromine, bromine chains could 
form inside SWCNTs, DWCNTs, graphite and graphene (Yaya et al., 2011). Experimental studies by 
Sung, Park, Park, and Hong (2007), suggest that bromine forms chains after encapsulation in SWCNTs 
with an odd number of bromide ions, Br−

3
, Br−

5
 becoming more stable than the Br2 molecule. Available 

DFT calculations of halogen chains have been performed mainly on polyiodide chains (Sharp & 
Gellene, 1997), with very few theoretical calculations reported in the literature on polybromide 
chains, which mainly focus on geometry optimizations and electron affinity.

In this paper, we address the question of equilibrium geometry, charge transfer and stretching 
modes of some selected polybromide chains using ab initio DFT methods. In addition, we also at-
tempt to reveal the particular reaction kinetics of (Br4) chain formation on graphene sheets, which to 
the best of our knowledge, has not been previously examined.

2. Methodology-computational modeling
Ab initio total energy calculations based on pseudopotential density functional theory within the 
local density approximation (LDA) (Kohn & Sham, 1965) were performed on Br2, Br

−

2
, Br−

3
, Br−

4
, Br−

5
 

polybromide anion and Br4 interacting with graphene sheet. Supercells containing 132 atoms were 
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used for bromine on graphene giving the empirical formula C128Br4, with a large vacuum spacing of 
at least 26.74 Å between layers to ensure no inter-layer interaction with the next layer when the 
sheet is repeated in space (the isolated bromine molecule and anions were calculated as a particle 
in a box with a 24.99 Å cubic supercell). The method has previously been used to determine the 
structural configuration of intercalated impurities in graphite (Suarez-Martinez, El-Barbary, Savini, & 
Heggie, 2007). Atomic charge states were obtained by summing Mulliken population analysis over 
all the filled electronic states.

We used a localised Gaussian basis set with a large number of fitting functions per atom (22 for 
each C atom and 50 for each Br in order to accommodate the spatially extended polarizable charge 
distribution of the anionic species), with angular momenta up to l = 2 for C and l = 3 for Br. The sam-
pling over the Brillouin zone was performed with weighted summation over wave vectors generated 
in the Monkhorst Pack scheme (Monkhorst & Pack, 1976), with the k-point grids chosen such that the 
k-point density was at least 1 k-point per 4.2 × 10−4 A−3. The tolerance in the convergence of self-
consistency was set as 1 × 10−7 eV/atom, and a finite temperature electron level filling of kT = 0.04 eV 
was used as a computational tool to improve convergence. Core electrons were eliminated using 
norm-conserving relativistic pseudopotentials of Hartwigsen, Goedecker and Hutter (Hartwigsen, 
Goedecker, & Hutter, 1998), with atomic valence electron configurations of 4s2 4p5 for Br and 2s2 2p2 
for C. The core radii of the pseudopotentials are 1.78 a.u and 1.32 a.u for Br and C respectively. A 
cut-off energy of 150 Hartrees was used to obtain convergence of the charge density. The calcula-
tions are performed using the density functional code, AIMPRO (Briddon & Jones, 2000; Briddon & 
Rayson, 2011; Rayson & Briddon, 2009). While the LDA approach does not include explicit dispersion 
interactions, the known over-binding of LDA compensates for this, and has been shown to give good 
results, for example for interlayer spacing and binding in graphite (Rob, 2003), and for molecular 
absorption on graphite surfaces (Adjizian et al., 2013).

All structures were geometrically optimised with no constraints of symmetry allowing both atomic 
positions and cell dimensions to vary freely. Optimization was not completed until forces on the at-
oms were less than 1 × 10−7 eV. Vibrational frequencies were calculated by determining the energy 
and forces for 0.2 a.u displacements of the Bromine atoms. The second derivatives on the displaced 
atoms can then be found from the two-sided difference formula for the second derivative. This ap-
proach does not lead to harmonic force constants as there are quartic and higher-order correction 
terms in these estimates of the second derivatives. We refer to the frequencies arising from these 
force constants as quasiharmonic. If all second derivatives Eij are evaluated, then the dynamical 
matrix can be found directly as Eij/(MiMj)0.5 where Mi is the mass of the ith atom. Further discussion of 
this approach is given in Guiot et al. (2009), where it was successfully used to identify stretching 
frequencies of bromine and iodine based small molecules. The activation barrier for Br2 combination 
is calculated using a nudged elastic band method, with seven intermediate image structures. After 
the end point structures have been fully optimised with no constraints, seven intermediate struc-
tures are simultaneously optimised with an additional energy constraint, in the form of a quadratic 
“spring” connecting an image to its two neighbours on the overall energy surface. After an initial five 
iterations, an additional “climbing” constraint is applied to the structure nearest the saddle point to 
ensure that it is constrained at the saddle point maximum.

The aim of the current study is to explore the stable ground state structures for isolated polybro-
mide species and in the presence of graphene, their interrelation and energetic conversion barriers, 
and their corresponding vibronic behaviour. Further studies could later be performed using time-
dependent approaches to explore optical excitations, but are not the purpose of the current study.

3. Results and discussion

3.1. Polybromide chains of Br−
2
, Br−

3
, Br−

4
, Br2−

4
 and Br−

5

Table 1, shows the optimised structures of different bromine anions, bond lengths and their stretch-
ing modes which were calculated and compared with literature DFT calculations and experimental 
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Raman measurements (see also Figure 1). Slight charge variations could explain differences in ob-
served modes, typically in crystals. Bond length and stretching frequencies changes dramatically 
with a gain in charge on the bromine molecule (Yaya et al., 2011). However, in the polybromide 
chains, the lower symmetry means that the charge state of each atom need not be equal and this 
results in different bond lengths and stretching frequencies. Atomic Br and molecular Br2 have been 
characterized well both experimentally and theoretically, hence, were used here as test systems for 
the performance of theoretical calculations on larger clusters of Br. Calculations of Br−

2
 stretching 

frequency from the literature lie below experiment values. However, our current work gave a better 
match to experiments. To the best of our knowledge, there is no experimental data reported for Br−

2
 

bond lengths and hence we could not make any meaningful comparisons to our calculated bond 
length. It should be stated however, there was a good match between other DFT calculated bond 
lengths of (2.81, 2.86 Å) with this work (2.83 Å).

Br
2−

4
 is a metastable species resulting when two molecules of Br−

2
 dimerize with formation energy 

per Br atom of (+0.42 eV) which is endothermic; making Br2−
4

 unstable compared to the other poly-
bromide structures such as Br−

3
 or Br−

5
. The charge sits primarily on the terminal atoms, accounting 

for the increase in bond length that were observed after geometry optimization, which then resulted 
in lower stretching modes. Experimental differences in vibrational frequency exist due to the cations 
used to stabilize the polybromide ion, as seen in the Raman modes in Table 1. Therefore, no infer-
ence could be drawn between the calculated stretching modes with that of Raman spectroscopy, 
however, the bond length calculated for Br2−

4
 fits better to experiments than the other DFT calcula-

tion methods, which predicted longer bond lengths for Br2−
4

. Other factors such as basis sets and the 
number of k-points used, could contribute to the differences between the calculated stretching fre-
quencies (58, 130 cm−1) and that from other DFT calculations (70, 176 cm−1) and also, differences 
may be, if the stretching frequency is highly anharmonic, since in our case the vibrations were calcu-
lated based on the quasi-harmonic approximation. Nonetheless, the error margins between the two 
separate theoretical works are acceptable.

Br
−

3
 polybromide anion has been seen in various geometrical structures with different levels of sym-

metry because of the influence of solvent interactions and crystal fields and is known to have two 
symmetry forms, Br−

3
 (C2v) and Br−

3
 (D∞h). In this study, the asymmetric structure (linear chain; Br−

3
 (D∞h)) 

and the symmetric structure (bent; Br−
3
 (C2v)) were optimised with calculated bond lengths and stretch-

ing modes compared with other similar data on these structures where available (see Table 1). It was 
found that, Br−

3
 (D∞h), was −1.60 eV more stable than its corresponding symmetry structure, Br−

3
 (C2v).

Again, the calculated values are consistent with experimental and other theoretical calculations. 
The calculated bond angle was 180° which agrees with the other calculation methods together with 
the experimental bond angle of 177.3°, reported by D.D.L Chung for asymmetric Br−

3
 (Chung, 1986).

Br
−

5
, has two symmetry forms, i.e. Br−

5
 (C2v) and Br−

5
 (D∞h) and are formed when Br2 binds to Br−

3
 with 

a binding energy of −0.11 eV per Br. Below is the reaction describing Br−
5
 (C2v) formation:

We find Br−
5
 (C2v), to be −0.23 eV more stable than the other symmetry form, Br−

5
 (D∞h), which is mostly 

reported in Raman spectra experiments, with no experimental confirmation for the theoretically 
predicted stable form. Our calculation for Br−

5
 (C2v), agrees with similar calculations done by others in 

terms of the stability of this symmetry over the linear form, and the calculated bond angles of 128.4° 
and 173.3° closely matches that of other DFT calculations (114.6° and 177.4°) (Schuster, Mikosch, & 
Baur, 1998). Again, the lack of experimental data on this symmetry form makes it difficult to draw 
any conclusions. For Br−

5
 (D∞h), we obtain the shorter bond length almost identical to experiment with 

the longer bond slightly underestimated. This is reflected in the calculated stretching frequencies 
with the higher frequency mode matching almost exactly experiment but the lower frequency mode 
slightly overestimated, as shown in Table 1.

Br
2
+ Br

−

3

ΔH=−0.544eV

⟶ Br
−

5
(C

2v
)
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Thus, where comparable data is available, it appears that we are able to accurately model poly-
bromide anions, generally reproducing experiment better than previous theoretical results. We next 
turn our attention to their formation and interaction with graphene.

3.2. Kinetic barrier for Br chain formation
Even though extensive progress has been made in the determination of structures and transitional 
phases in graphite-bromine at or above room temperature with many experimental and theoretical 
data, a lot remains to be answered concerning what happens to graphite-bromine at high concen-
tration and low temperatures. The existence of polybromides chains was reported experimentally by 
D.D.L. Chung et al. who proposed the chain of polybromides at liquid nitrogen temperature in her 
work on graphite-bromine intercalates (Chung, 2002).

Suzuki, Yokohama, and Ito (1929), carried out Raman vibrational spectroscopy for bromine chains 
at 77K and reported frequencies as low as (110, 96, 82, 70, 53 cm−1). The lowest temperature Raman 
frequency measurement in the literature was carried out at 15 K, in which frequencies for solid bro-
mine were given as (55, 74, 86, 101 cm−1), by Cahill and Leroi (1969).

We are not aware of theoretical calculations confirming these polybromides chains with carbon at 
low temperatures. Therefore, this section of the paper is aimed at giving insight on these complexes 
and unclear processes occurring during the formation of these structures.

Figure 1. Our optimized 
geometry of some of the 
polybromide chains bond 
lengths with; (a) Br−

3
 (D∞h), (b) 

Br
−

4
 (D∞h), (c) Br−

3
 (C2v), and (d) Br−

5
 

(D∞h) in which the symmetry 
group of the polybromide 
chains are given in parenthesis.

(a) (b)

(c) (d)

Figure 2. Optimized geometries 
of (a) 2Br2 on graphene, with 
Br-Br bond length of 2.3 Å 
and at a distance 2.7 Å from 
the graphene surface, (b) Br4 
with bond lengths of 2.4 Å, 
2.6 Å and distance 3.3 Å on 
graphene. This was used as 
the hypothetical reaction 
for the thermodynamic 
transformation.

(a) (b)

Table 2. Calculated parameters for graphene interacting with Br4 and 2Br2 during the formation 
of chain structures
Calculated parameters Br4 on graphene 2Br2 on graphene
Br-Br bond length (Å) 2.4, 2.6 2.33

Br-C distance (Å) 3.3 2.70

C-Br-Br bond angle (°C) 70.3 180

Stretching frequency (cm−1) 175 284

Charge transfer/Br (e) 0.3 0.2



Page 8 of 10

Yaya et al., Cogent Engineering (2016), 3: 1261509
http://dx.doi.org/10.1080/23311916.2016.1261509

An optimised geometry (see Figure 2) of bromine molecules on graphene was obtained by placing 
two molecules of bromine at a distance of 11.28 Å apart on a graphene sheet, Table 2.

Thermodynamically, a reaction in which two molecules of bromine sitting at a distance of 11.28 Å 
apart on graphene sheet and perpendicular to each other, will gradually align into chains of Br4 po-
lybromide ions with an increase in bond length and a decrease in vibrational stretching mode as a 
result of charge transfer, but, kinetically this seems restricted, due to the presence of a kinetic 
barrier.

While, the formation of chain structures is favourable, there is a barrier (activation energy) for the 
two bromine molecules to stick together in forming this chain which was calculated as 0.35 eV. This 
is due to a longer range Coulombic repulsion of associated holes in graphene beneath the Br2, and 
Coulombic repulsion between the Br2 themselves at shorter distance. This transformation is exother-
mic, in which the enthalpy of formation for the reaction was calculated as; ΔH = −0.28 eV, as shown 
in Figure 3. We initially studied many polymerised Br structures in graphite, often by starting from 
cells with too high Br density. All calculations of Br vibrational modes were consistent with the values 
reported in Table 2, i.e. in the range 170–190 cm−1. This stretch frequency therefore seems to be 
characteristic of polymerisation in the C-Br system. The charge transfer induced by chains appears 
to be greater, per bromine, than that associated with molecular Br2.

4. Discussion and conclusions
In this current study we calculate the structure and vibrational modes for a range of small polybro-
mide species. Excellent agreement with experiment is found for Br2, Br

−

2
 and Br3. More extended 

species such as Br4 also appear to be possible and energetically favoured on graphene surfaces as 
compared to isolated Br2, but we find a small energy barrier to Br4 formation.

It is interesting to speculate from this whether polybromide chains may be common in carbon 
nanomaterials. Notably, polyhalide analogues of bromide, have been observed in brominated poly-
mers and there is indirect evidence that such chains may also exist in some brominated carbon na-
nomaterials. The formation of polybromide chains from Bromine pairs is favourable but due to 
Coulombic repulsion of associated holes in graphene, this is kinetically hindered. For the polybro-
mide chains, longer bond lengths and low stretching frequency mode were observed.

The total charge transfer for 2Br2 is 0.4e compare 1.2 e for Br4 resulting in stronger electrostatic 
interaction between Br2 and graphene. This therefore, resulted in a shorter interlayer distance for the 
Br2 in graphene than that of the Br4.

Figure 3. Activation energy 
barrier curve for Br4 chain 
formation on graphene.
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