1,683 research outputs found

    Thermoacoustic effects in supercritical fluids near the critical point: Resonance, piston effect, and acoustic emission and reflection

    Full text link
    We present a general theory of thermoacoustic phenomena in supercritical fluids near the critical point in a one-dimensional cell. We take into account the effects of the heat conduction in the boundary walls and the bulk viscosity near the critical point. We introduce a coefficient Z(ω)Z(\omega) characterizing reflection of sound with frequency ω\omega at the boundary. As applications, we examine the acoustic eigenmodes in the cell, the response to time-dependent perturbations, sound emission and reflection at the boundary. Resonance and rapid adiabatic changes are noteworthy. In these processes, the role of the thermal diffusion layers is enhanced near the critical point because of the strong critical divergence of the thermal expansion.Comment: 15 pages, 7 figure

    Dynamics of Binary Mixtures with Ions: Dynamic Structure Factor and Mesophase Formation

    Get PDF
    Dynamic equations are presented for polar binary mixtures containing ions in the presence of the preferential solvation. In one-phase states, we calculate the dynamic structure factor of the composition accounting for the ion motions. Microphase separation can take place for sufficiently large solvation asymmetry of the cations and the anions. We show two-dimensional simulation results of the mesophase formation with an antagonistic salt, where the cations are hydrophilic and the anions are hydrophobic. The structure factor S(q) in the resultant mesophase has a sharp peak at an intermediate wave number on the order of the Debye-Huckel wave number. As the quench depth is increased, the surface tension nearly vanishes in mesophases due to an electric double layer.Comment: 24 pages, 10 figures, to appear in Journal of Physics: Condensed Matte

    Intermediate states at structural phase transition: Model with a one-component order parameter coupled to strains

    Full text link
    We study a Ginzburg-Landau model of structural phase transition in two dimensions, in which a single order parameter is coupled to the tetragonal and dilational strains. Such elastic coupling terms in the free energy much affect the phase transition behavior particularly near the tricriticality. A characteristic feature is appearance of intermediate states, where the ordered and disordered regions coexist on mesoscopic scales in nearly steady states in a temperature window. The window width increases with increasing the strength of the dilational coupling. It arises from freezing of phase ordering in inhomogeneous strains. No impurity mechanism is involved. We present a simple theory of the intermediate states to produce phase diagrams consistent with simulation results.Comment: 16 pages, 14 figure

    Phase separation transition in liquids and polymers induced by electric field gradients

    Full text link
    Spatially uniform electric fields have been used to induce instabilities in liquids and polymers, and to orient and deform ordered phases of block-copolymers. Here we discuss the demixing phase transition occurring in liquid mixtures when they are subject to spatially nonuniform fields. Above the critical value of potential, a phase-separation transition occurs, and two coexisting phases appear separated by a sharp interface. Analytical and numerical composition profiles are given, and the interface location as a function of charge or voltage is found. The possible influence of demixing on the stability of suspensions and on inter-colloid interaction is discussed.Comment: 7 pages, 3 figures. Special issue of the J. Phys. Soc. Ja

    Plastic deformations in crystal, polycrystal, and glass in binary mixtures under shear: Collective yielding

    Full text link
    Using molecular dynamics simulation, we examine the dynamics of crystal, polycrystal, and glass in a Lennard-Jones binary mixture composed of small and large particles in two dimensions. The crossovers occur among these states as the composition c is varied at fixed size ratio. Shear is applied to a system of 9000 particles in contact with moving boundary layers composed of 1800 particles. The particle configurations are visualized with a sixfold orientation angle alpha_j(t) and a disorder variable D_j(t) defined for particle j, where the latter represents the deviation from hexagonal order. Fundamental plastic elements are classified into dislocation gliding and grain boundary sliding. At any c, large-scale yielding events occur on the acoustic time scale. Moreover, they multiply occur in narrow fragile areas, forming shear bands. The dynamics of plastic flow is highly hierarchical with a wide range of time scales for slow shearing. We also clarify the relationship between the shear stress averaged in the bulk region and the wall stress applied at the boundaries.Comment: 17 pages, 15 figures, to appear in Physical Review

    Dimensionless scaling of heat-release-induced planar shock waves in near-critical CO2

    Full text link
    We performed highly resolved one-dimensional fully compressible Navier-Stokes simulations of heat-release-induced compression waves in near-critical CO2. The computational setup, inspired by the experimental setup of Miura et al., Phys. Rev. E, 2006, is composed of a closed inviscid (one-dimensional) duct with adiabatic hard ends filled with CO2 at three supercritical pressures. The corresponding initial temperature values are taken along the pseudo-boiling line. Thermodynamic and transport properties of CO2 in near-critical conditions are modeled via the Peng-Robinson equation of state and Chung's Method. A heat source is applied at a distance from one end, with heat release intensities spanning the range 10^3-10^11 W/m^2, generating isentropic compression waves for values < 10^9 W/m^2. For higher heat-release rates such compressions are coalescent with distinct shock-like features (e.g. non-isentropicity and propagation Mach numbers measurably greater than unity) and a non-uniform post-shock state is present due to the strong thermodynamic nonlinearities. The resulting compression wave intensities have been collapsed via the thermal expansion coefficient, highly variable in near-critical fluids, used as one of the scaling parameters for the reference energy. The proposed scaling applies to isentropic thermoacoustic waves as well as shock waves up to shock strength 2. Long-term time integration reveals resonance behavior of the compression waves, raising the mean pressure and temperature at every resonance cycle. When the heat injection is halted, expansion waves are generated, which counteract the compression waves leaving conduction as the only thermal relaxation process. In the long term evolution, the decay in amplitude of the resonating waves observed in the experiments is qualitatively reproduced by using isothermal boundary conditions.Comment: As submitted to AIAA SciTech 2017, available at http://arc.aiaa.org/doi/pdf/10.2514/6.2017-008

    Molecular Dynamics Simulation of Heat-Conducting Near-Critical Fluids

    Full text link
    Using molecular dynamics simulations, we study supercritical fluids near the gas-liquid critical point under heat flow in two dimensions. We calculate the steady-state temperature and density profiles. The resultant thermal conductivity exhibits critical singularity in agreement with the mode-coupling theory in two dimensions. We also calculate distributions of the momentum and heat fluxes at fixed density. They indicate that liquid-like (entropy-poor) clusters move toward the warmer boundary and gas-like (entropy-rich) regions move toward the cooler boundary in a temperature gradient. This counterflow results in critical enhancement of the thermal conductivity

    Anomalous quasiparticle transport in the superconducting state of CeCoIn5

    Full text link
    We report on a study of thermal Hall conductivity k_xy in the superconducting state of CeCoIn_5. The scaling relation and the density of states of the delocalized quasiparticles, both obtained from k_xy, are consistent with d-wave superconducting symmetry. The onset of superconductivity is accompanied by a steep increase in the thermal Hall angle, pointing to a striking enhancement in the quasiparticle mean free path. This enhancement is drastically suppressed in a very weak magnetic field. These results highlight that CeCoIn_5 is unique among superconductors. A small Fermi energy, a large superconducting gap, a short coherence length, and a long mean free path all indicate that CeCoIn_5 is clearly in the superclean regime (E_F/Delta<<l/xi), in which peculiar vortex state is expected.Comment: 5 pages, 5 figure

    Thermoelectric response near a quantum critical point: the case of CeCoIn5

    Full text link
    We present a study of thermoelectric coefficients in CeCoIn_5 down to 0.1 K and up to 16 T in order to probe the thermoelectric signatures of quantum criticality. In the vicinity of the field-induced quantum critical point, the Nernst coefficient nu exhibits a dramatic enhancement without saturation down to lowest measured temperature. The dimensionless ratio of Seebeck coefficient to electronic specific heat shows a minimum at a temperature close to threshold of the quasiparticle formation. Close to T_c(H), in the vortex-liquid state, the Nernst coefficient behaves anomalously in puzzling contrast with other superconductors and standard vortex dynamics.Comment: 4 pages, 4 figures,final published versio
    • …
    corecore