1,167 research outputs found

    Transport through a double barrier in Large Radius Carbon Nanotubes in the presence of a transverse magnetic field

    Full text link
    We discuss the Luttinger Liquid behaviour of Large Radius Carbon Nanotube e.g. the Multi Wall ones (MWNT), under the action of a transverse magnetic field BB. Our results imply a reduction with BB in the value of the bulkbulk critical exponent, αbulk\alpha_{bulk}, for the tunneling density of states, which is in agreement with that observed in transport experiments. Then, the problem of the transport through a Quantum Dot formed by two intramolecular tunneling barriers along the MWNT, weakly coupled to Tomonaga-Luttinger liquids is studied, including the action of a strong transverse magnetic field BB. {We predict the presence of some peaks in the conductance G versus BB, related to the magnetic flux quantization in the ballistic regime (at a very low temperature, TT) and also at higher TT, where the Luttinger behaviour dominates}. The temperature dependence of the maximum GmaxG_{max} of the conductance peak according to the Sequential Tunneling follows a power law, GTγe1G\propto T^{\gamma_e-1} with γe\gamma_e linearly dependent on the critical exponent, αend\alpha_{end}, strongly reduced by BB.Comment: 8 pages, 3 figures, PACS numbers: 05.60.Gg, 71.10.Pm, 73.63.-b, 71.20.Tx, 72.80.R

    Large N Effects and Renormalization of the Long-Range Coulomb Interaction in Carbon Nanotubes

    Full text link
    We develop a dimensional regularization approach to deal with the low-energy effects of the long-range Coulomb interaction in 1D electron systems. The method allows us to avoid the infrared singularities arising from the long-range Coulomb interaction at D = 1, providing at the same time insight about the fixed-points of the theory. We show that the effect of increasing the number N of subbands at the Fermi level is opposite to that of approaching the bare Coulomb interaction in the limit D --> 1. Then, we devise a double scaling limit, in which the large N effects are able to tame the singularities due to the long-range interaction. Thus, regular expressions can be obtained for all observables right at D = 1, bearing also a dependence o the doping level of the system. Our results imply a variation with N in the value of the exponent for the tunneling density of states, which is in fair agreement with that observed in different transport experiments involving carbon nanotubes. As the doping level is increased in nanotubes of large radius and multi-walled nanotubes, we predict a significant reduction of order N^{-1/2} in the critical exponent of the tunneling density of states.Comment: 16 pages, 5 figures, PACS codes: 73.40, 11.10.

    Independence Rejected: The Philippines, 1924

    Get PDF

    Envelope solitons induced by high-order effects of light-plasma interaction

    Full text link
    The nonlinear coupling between the light beams and non-resonant ion density perturbations in a plasma is considered, taking into account the relativistic particle mass increase and the light beam ponderomotive force. A pair of equations comprising a nonlinear Schrodinger equation for the light beams and a driven (by the light beam pressure) ion-acoustic wave response is derived. It is shown that the stationary solutions of the nonlinear equations can be represented in the form of a bright and dark/gray soliton for one-dimensional problem. We have also present a numerical analysis which shows that our bright soliton solutions are stable exclusively for the values of the parameters compatible with of our theory.Comment: 9 pages, 5 figure
    corecore