research

Transport through a double barrier in Large Radius Carbon Nanotubes in the presence of a transverse magnetic field

Abstract

We discuss the Luttinger Liquid behaviour of Large Radius Carbon Nanotube e.g. the Multi Wall ones (MWNT), under the action of a transverse magnetic field BB. Our results imply a reduction with BB in the value of the bulkbulk critical exponent, αbulk\alpha_{bulk}, for the tunneling density of states, which is in agreement with that observed in transport experiments. Then, the problem of the transport through a Quantum Dot formed by two intramolecular tunneling barriers along the MWNT, weakly coupled to Tomonaga-Luttinger liquids is studied, including the action of a strong transverse magnetic field BB. {We predict the presence of some peaks in the conductance G versus BB, related to the magnetic flux quantization in the ballistic regime (at a very low temperature, TT) and also at higher TT, where the Luttinger behaviour dominates}. The temperature dependence of the maximum GmaxG_{max} of the conductance peak according to the Sequential Tunneling follows a power law, GTγe1G\propto T^{\gamma_e-1} with γe\gamma_e linearly dependent on the critical exponent, αend\alpha_{end}, strongly reduced by BB.Comment: 8 pages, 3 figures, PACS numbers: 05.60.Gg, 71.10.Pm, 73.63.-b, 71.20.Tx, 72.80.R

    Similar works

    Full text

    thumbnail-image