2 research outputs found

    Pan-european assessment, monitoring, and mitigation of stressors on the health of bees

    Get PDF
    Within the PoshBee Project we have tested three bee species – honey bees Apis mellifera, bumble bees Bombus terrestris and solitary bees Osmia bicornis – for their sensitivity to pesticides and analysed the clearance of pesticides from bees. For each species, all castes and sexes were studied. We synthesised the mortality data (LD50 or results of limit tests) with the toxicokinetic patterns and analysed this against the background of inter- and intraspecific variation in life-histories of the tested bees. The clearance of sulfoxaflor is relatively similar across all bee species tested and in females after contact treatment it tends to be retained. The toxicity increases over time independently of the clearance from the body. The clearance of azoxystrobin was rapid in Osmia and bumble bees, as well as in honey bee queens, but in honey bee workers there was very little clearance. Similar to sulfoxaflor the toxicity increased over time, although the residues were detected at very low levels. Glyphosate tended to be retained in bumble bees after contact treatment but cleared rapidly after oral treatment. For Osmia bees only in males after contact treatment was the glyphosate almost lost. The toxicity of a pesticide is dependent on the exact dosage, but also the exposure route and time, as well as the speed of detoxification and clearance from a body. The assessment for the hazard that a less toxic pesticide might pose, can be largely dependent on the exposure route. The effects of pesticide toxicity can increase even after the molecules have been cleared out of the body.Prepared under contract from the European Commission; Grant agreement No. 773921; EU Horizon 2020 Research and Innovation action.Prepared under contract from the European Commission; Grant agreement No. 773921; EU Horizon 2020 Research and Innovation action

    Pan-european assessment, monitoring, and mitigation of stressors on the health of bees

    Get PDF
    Inter-individual differences in pesticide sensitivity may trigger variability in the risk posed by pesticides. Therefore, to better inform pesticide risk assessment for bees, we studied the variability of responses to several pesticides based on endogenous (developmental stage, genetic background, caste) and exogenous factors (pesticide co-exposure). We mainly investigated the toxicity of the insecticide sulfoxaflor, the fungicide azoxystrobin and the herbicide glyphosate. We first used LD50 tests to determine the acute oral and contact toxicity of these pesticides across the different bee species, developmental stages (larva vs adult in honey bees), castes (honey bee and bumble bee workers, queens and drones), and genetic backgrounds (honey bee subspecies). We then considered the risks posed by chronic and sublethal exposures to pesticides by implementing behavioural and reproductive endpoints in the screening of pesticide toxicity. Data showed that azoxystrobin and glyphosate under the test conditions were mildly toxic to bees. However, a large variability in bee sensitivity to sulfoxaflor was found, especially across species and individuals of different castes or sex. This variability is therefore important to consider for increasing the safety margin of the risk posed by insecticides in bees. Several effects induced by sublethal concentrations or doses of pesticides are also described, such as the occurrence of a Non-Monotonic Dose-Response (NMDR) and delayed effects in honey bees, impairment of reproductive performances in bumble bees, and a decreased longevity of Osmia adult females (although no effects were found on larval development). Finally, an interaction between pesticides was found when exposure was by contact, but not under oral exposure. In conclusion, the range of effects described here provides very useful insights for better understanding the toxicity of pesticides and therefore the risks they might pose to bees.Prepared under contract from the European Commission; Grant agreement No. 773921; EU Horizon 2020 Research and Innovation action.Prepared under contract from the European Commission; Grant agreement No. 773921; EU Horizon 2020 Research and Innovation action
    corecore