1,448 research outputs found
Finite-Temperature Mott Transition in the Two-Dimensional Hubbard Model
Mott transitions are studied in the two-dimensional Hubbard model by a
non-perturbative theory of correlator projection that systematically includes
spatial correlations into the dynamical mean-field approximation. Introducing a
nonzero second-neighbor transfer, a first-order Mott transition appears at
finite temperatures and ends at a critical point or curve.Comment: 2 pages, to appear in J. Mag. Mag. Mat. as proceedings of the
International Conference on Magnetism 200
Intrinsic vs. extrinsic anomalous Hall effect in ferromagnets
A unified theory of the anomalous Hall effect (AHE) is presented for
multi-band ferromagnetic metallic systems with dilute impurities. In the clean
limit, the AHE is mostly due to the extrinsic skew-scattering. When the Fermi
level is located around anti-crossing of band dispersions split by spin-orbit
interaction, the intrinsic AHE to be calculated ab initio is resonantly
enhanced by its non-perturbative nature, revealing the extrinsic-to-intrinsic
crossover which occurs when the relaxation rate is comparable to the spin-orbit
interaction energy.Comment: 5 pages including 4 figures, RevTex; minor changes, to appaer in
Phys. Rev. Let
Photoemission Spectral Weight Transfer and Mass Renormalization in the Fermi-Liquid System LaSrTiO
We have performed a photoemission study of LaSrTiO near
the filling-control metal-insulator transition (MIT) as a function of hole
doping. Mass renormalization deduced from the spectral weight and the width of
the quasi-particle band around the chemical potential is compared with
that deduced from the electronic specific heat. The result implies that, near
the MIT, band narrowing occurs strongly in the vicinity of . Spectral
weight transfer occurs from the coherent to the incoherent parts upon
antiferromagnetic ordering, which we associate with the partial gap opening at
.Comment: 4 pages, 3 figure
Localization in a quantum spin Hall system
Localization problem of electronic states in a two-dimensional quantum spin
Hall system (QSH - a symplectic model with a non-trivial topological structure)
is studied by the transfer matrix method. The phase diagram in the plane of
energy and disorder strength is exposed, and demonstrates "levitation" and
"pair-annihilation" of the domains of extended states analogous to that of the
integer quantum Hall system. The critical exponent for the divergence of
the localization length is estimated as which is distinct from
both exponents pertaining to the conventional symplectic and the unitary
quantum Hall systems. This strongly suggests a different universality class
related to the non-trivial topology of the QSH system.Comment: 5 pages, 4 figures, REVTe
Dynamics of localized spins coupled to the conduction electrons with charge/spin currents
The effects of the charge/spin currents of conduction electrons on the
dynamics of the localized spins are studied in terms of the perturbation in the
exchange coupling between them. The equations of motion for the
localized spins are derived exactly up to , and the equations for
the two-spin system is solved numerically. It is found that the dynamics
depends sensitively upon the relative magnitude of the charge and spin
currents, i.e., it shows steady state, periodic motion, and even chaotic
behavior. Extension to the multi-spin system and its implications including
possible ``spin current detector'' are also discussed.Comment: 5 pages, 4 figures, REVTe
Theory of Electron Differentiation, Flat Dispersion and Pseudogap Phenomena
Aspects of electron critical differentiation are clarified in the proximity
of the Mott insulator. The flattening of the quasiparticle dispersion appears
around momenta and on square lattices and determines the
criticality of the metal-insulator transition with the suppressed coherence in
that momentum region of quasiparticles. Such coherence suppression at the same
time causes an instability to the superconducting state if a proper incoherent
process is retained. The d-wave pairing interaction is generated from such
retained processes without disturbance from the coherent single-particle
excitations. Pseudogap phenomena widely observed in the underdoped cuprates are
then naturally understood from the mode-mode coupling of d-wave
superconducting(dSC) fluctuations with antiferromagnetic ones. When we assume
the existence of a strong d-wave pairing force repulsively competing with
antiferromagnetic(AFM) fluctuations under the formation of flat and damped
single-particle dispersion, we reproduce basic properties of the pseudogap seen
in the magnetic resonance, neutron scattering, angle resolved photoemission and
tunneling measurements in the cuprates.Comment: 9 pages including 2 figures, to appear in J. Phys. Chem. Solid
Investigation of the use of microwave image line integrated circuits for use in radiometers and other microwave devices in X-band and above
Program results are described in which the use of a/high permittivity rectangular dielectric image waveguide has been investigated for use in microwave and millimeter wavelength circuits. Launchers from rectangular metal waveguide to image waveguide are described. Theoretical and experimental evaluations of the radiation from curved image waveguides are given. Measurements of attenuation due to conductor and dielectric losses, adhesives, and gaps between the dielectric waveguide and the image plane are included. Various passive components are described and evaluations given. Investigations of various techniques for fabrication of image waveguide circuits using ceramic waveguides are also presented. Program results support the evaluation of the image line approach as an advantageous method for realizing low loss integrated electronic circuits for X-band and above
Effective mass staircase and the Fermi liquid parameters for the fractional quantum Hall composite fermions
Effective mass of the composite fermion in the fractional quantum Hall
system, which is of purely interaction originated, is shown, from a numerical
study, to exhibit a curious nonmonotonic behavior with a staircase correlated
with the number (=2,4,...) of attached flux quanta. This is surprising since
the usual composite-fermion picture predicts a smooth behavior. On top of that,
significant interactions are shown to exist between composite fermions, where
the excitation spectrum is accurately reproduced in terms of Landau's Fermi
liquid picture with negative (i.e., Hund's type) orbital and spin exchange
interactions.Comment: 4 pages, 3 figures, REVTe
- …