70 research outputs found

    Soymilk Improves Muscle Weakness in Young Ovariectomized Female Mice

    Get PDF
    Estrogens play a key role in an extensive range of physiological functions in various types of tissues throughout the body in females. We previously showed that estrogen insufficiency caused muscle weakness that could be rescued by estrogen administration in a young female ovariectomized (OVX) mouse model. However, long-term estrogen replacement therapy increases risks of breast cancer and cardiovascular diseases. Soymilk contains plant-based protein and isoflavones that exert estrogen-like activity. Here we examined the effects of prolonged soymilk intake on muscle and its resident stem cells, called satellite cells, in the estrogen-insufficient model. Six-week-old C57BL/6 OVX female mice were fed with a dried soymilk-containing diet. We found that prolonged soymilk intake upregulated grip strength in OVX mice. Correspondingly, cross-sectional area of tibialis anterior muscle was significantly increased in OVX mice fed with soymilk. Furthermore, soymilk diet mitigated dysfunction of satellite cells isolated from OVX mice. Thus, these results indicated that prolonged soymilk intake is beneficial for improving muscle weakness in an estrogen-insufficient state in females

    Lifestyle factors and visible skin aging in a population of Japanese elders.

    Get PDF
    BACKGROUND: The number of studies that use objective and quantitative methods to evaluate facial skin aging in elderly people is extremely limited, especially in Japan. Therefore, in this cross-sectional study we attempted to characterize the condition of facial skin (hyperpigmentation, pores, texture, and wrinkling) in Japanese adults aged 65 years or older by using objective and quantitative imaging methods. In addition, we aimed to identify lifestyle factors significantly associated with these visible signs of aging. METHODS: The study subjects were 802 community-dwelling Japanese men and women aged at least 65 years and living in the town of Kurabuchi (Takasaki City, Gunma Prefecture, Japan), a mountain community with a population of approximately 4800. The facial skin condition of subjects was assessed quantitatively using a standardized facial imaging system and subsequent computer image analysis. Lifestyle information was collected using a structured questionnaire. The association between skin condition and lifestyle factors was examined using multivariable regression analysis. RESULTS: Among women, the mean values for facial texture, hyperpigmentation, and pores were generally lower than those among age-matched men. There was no significant difference between sexes in the severity of facial wrinkling. Older age was associated with worse skin condition among women only. After adjusting for age, smoking status and topical sun protection were significantly associated with skin condition among both men and women. CONCLUSIONS: Our study revealed significant differences between sexes in the severity of hyperpigmentation, texture, and pores, but not wrinkling. Smoking status and topical sun protection were significantly associated with signs of visible skin aging in this study population

    Enhanced Nox1 expression and oxidative stress resistance in c-kit-positive hematopoietic stem/progenitor cells

    Get PDF
    Although stem cells are generally thought to be resistant to oxidative stress, the fact and in detail molecular mechanism are still to be clearly identified. We herein tried to understand the overall characterization of redox regulatory signaling in hematopoietic stem cells. We purified c-kit-positive hematopoietic stem/progenitor cells from the bone marrow of healthy mice, and then evaluated their redox regulatory property. Compared to the c-kit-negative matured mononuclear cells, c-kit-positive stem/progenitor cells showed lower basic levels of intracellular reactive oxygen species, faster clearance of the accumulated intracellular reactive oxygen species, and higher resistant to oxidative stress. An overall view on the gene expression profile associated with redox regulation showed to be widely differed between cell types. We confirmed that the c-kit-positive stem/progenitor cells expressed significantly higher of Nox1 and catalase, but less of lactoperoxidase than these matured mononuclear cells. Our data suggests that stem cells keep specific redox regulatory property for defensing against oxidative stress

    Distinct Roles of α7 nAChRs in Antigen-Presenting Cells and CD4+ T Cells in the Regulation of T Cell Differentiation

    Get PDF
    It is now apparent that immune cells express a functional cholinergic system and that α7 nicotinic acetylcholine receptors (α7 nAChRs) are involved in regulating T cell differentiation and the synthesis of antigen-specific antibodies and proinflammatory cytokines. Here, we investigated the specific function α7 nAChRs on T cells and antigen presenting cells (APCs) by testing the effect of GTS-21, a selective α7 nAChR agonist, on differentiation of CD4+ T cells from ovalbumin (OVA)-specific TCR transgenic DO11.10 mice activated with OVA or OVA peptide323−339 (OVAp). GTS-21 suppressed OVA-induced antigen processing-dependent development of CD4+ regulatory T cells (Tregs) and effector T cells (Th1, Th2, and Th17). By contrast, GTS-21 up-regulated OVAp-induced antigen processing-independent development of CD4+ Tregs and effector T cells. GTS-21 also suppressed production of IL-2, IFN-γ, IL-4, IL-17, and IL-6 during OVA-induced activation but, with the exception IL-2, enhanced their production during OVAp-induced activation. In addition, during antigen-nonspecific, APC-independent anti-CD3/CD28 antibody-induced CD4+ polyclonal T cell activation in the presence of respective polarizing cytokines, GTS-21 promoted development of all lineages, which indicates that GTS-21 also acts via α7 nAChRs on T cells. These results suggest 1) that α7 nAChRs on APCs suppress CD4+ T cell activation by interfering with antigen presentation through inhibition of antigen processing; 2) that α7 nAChRs on CD4+ T cells up-regulate development of Tregs and effector T cells; and that α7 nAChR agonists and antagonists could be potentially useful agents for immune response modulation and enhancement

    A community intervention trial of multimodal suicide prevention program in Japan: A Novel multimodal Community Intervention program to prevent suicide and suicide attempt in Japan, NOCOMIT-J

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To respond to the rapid surge in the incidence of suicide in Japan, which appears to be an ongoing trend, the Japanese Multimodal Intervention Trials for Suicide Prevention (J-MISP) have launched a multimodal community-based suicide prevention program, NOCOMIT-J. The primary aim of this study is to examine whether NOCOMIT-J is effective in reducing suicidal behavior in the community.</p> <p>Methods/DesignThis study is a community intervention trial involving seven intervention regions with accompanying control regions, all with populations of statistically sufficient size. The program focuses on building social support networks in the public health system for suicide prevention and mental health promotion, intending to reinforce human relationships in the community. The intervention program components includes a primary prevention measures of awareness campaign for the public and key personnel, secondary prevention measures for screening of, and assisting, high-risk individuals, after-care for individuals bereaved by suicide, and other measures. The intervention started in July 2006, and will continue for 3.5 years. Participants are Japanese and foreign residents living in the intervention and control regions (a total of population of 2,120,000 individuals).</p> <p>Discussion</p> <p>The present study is designed to evaluate the effectiveness of the community-based suicide prevention program in the seven participating areas.</p> <p>Trial registration</p> <p>UMIN Clinical Trials Registry (UMIN-CTR) UMIN000000460.</p

    Physiological and Ultrastructural Studies on the Origin of Activator Calcium in Body Wall Muscles of Spoon Worms

    Get PDF
    To examine the origin of activator Ca and its translocation during contraction in body wall muscles (BWM) of spoon worms, Urechis unicinctus , physiological and ultrastructural studies, including cytochemistry, were performed. The potassium (K-) contracture tension was significantly reduced by the removal of external Ca, and by the application of Mn, La and verapamil. On the other hand, caffeine induced a prolonged contraction. The removal of Ca and Mg from the external solution, and the rapid cooling caused an irregular or oscillatory contraction. These results suggested that, in BWM fibers, the activator Ca is supplied partially from both external solution and intracellular Ca-accumulating structures. Ultrastructural observations revealed that the muscle fibers contain a relatively large amount of sarcoplasmic reticulum (SR). The fractional volume of the SR relative to the fiber volume was 2~5% in all fibers of three muscle layers. To demonstrate the Ca localization, the muscle fibers were fixed by pyroantimonate (PA) methods at resting and contracting states. In the resting fibers, the PA precipitates were exclusively localized in the SR and the inner surface of plasma membrane. On the other hand, in the contracting fibers, they were diffusely distributed in the central regions of myoplasm, and had disappeared from the SR and plasma membrane. X-ray microanalysis revealed that the PA precipitates contain Ca. With the results of physiological experiments, these results indicate that the activator Ca originates not only from the external solution, but also from the intracellular Ca-accumulating structures, the SR and the inner surface of plasma membrane.Full-Length Pape

    Ab Initio Study of Xe Adsorption on Graphene

    Get PDF
    The adsorption of Xe on graphene has been systematically investigated by ab initio MP2 calculations using Dunning's correlation-consistent basis sets. The polycyclic aromatic hydrocarbon (i.e., coronene) is employed to model the graphene surface. The adsorption energies at three high-symmetry sites on the surface are calculated at the MP2/cc-pVTZ/cc-pVDZ-PP level. Our results show that Xe preferentially occupies the hollow site on the graphene surface. The equilibrium distance of Xe at the hollow site is calculated as 3.56Å, which is in excellent agreement with the available experimental value of 3.59 ± 0.05 Å. The corresponding binding energy at the hollow site is calculated as -142.9 meV, whereas the binding energies at the bridge and on-top sites are calculated as -130.8 and -127.4 meV, respectively. The adsorption of polar molecules, XeF and XeBeO, on graphene is also investigated to analyze the site preference

    Visualization of reaction route map and dynamical trajectory in reduced dimension

    Get PDF
    In the quantum chemical approach, chemical reaction mechanisms are investigated based on a potential energy surface (PES). Automated reaction path search methods enable us to construct a global reaction route map containing multiple reaction paths corresponding to a series of elementary reaction processes. The on-the-fly molecular dynamics (MD) method provides a classical trajectory exploring the full-dimensional PES based on electronic structure calculations. We have developed two reaction analysis methods, the on-the-fly trajectory mapping method and the reaction space projector (ReSPer) method, by introducing a structural similarity to a pair of geometric structures and revealed dynamic aspects affecting chemical reaction mechanisms. In this review, we will present the details of these analysis methods and discuss the dynamics effects of reaction path curvature and reaction path bifurcation with applications to the CH3OH + OH- collision reaction and the Au-5 cluster branching and isomerization reactions
    corecore