7,558 research outputs found
Nucleon Flow and Fragment Flow in Heavy Ion Reactions
The collective flow of nucleons and that of fragments in the 12C + 12C
reaction below 150 MeV/nucleon are calculated with the antisymmetrized version
of molecular dynamics combined with the statistical decay calculation. Density
dependent Gogny force is used as the effective interaction. The calculated
balance energy is about 100 MeV/nucleon, which is close to the observed value.
Below the balance energy, the absolute value of the fragment flow is larger
than that of nucleon flow, which is also in accordance with data. The
dependence of the flow on the stochastic collision cross section and its origin
are discussed. All the results are naturally understood by introducing the
concept of two components of flow: the flow of dynamically emitted nucleons and
the flow of the nuclear matter which contributes to both the flow of fragments
and the flow of nucleons due to the statistical decay.Comment: 20 pages, PostScript figures, LaTeX with REVTeX and EPSF, KUNS 121
Pariah moonshine
Finite simple groups are the building blocks of finite symmetry. The effort
to classify them precipitated the discovery of new examples, including the
monster, and six pariah groups which do not belong to any of the natural
families, and are not involved in the monster. It also precipitated monstrous
moonshine, which is an appearance of monster symmetry in number theory that
catalysed developments in mathematics and physics. Forty years ago the pioneers
of moonshine asked if there is anything similar for pariahs. Here we report on
a solution to this problem that reveals the O'Nan pariah group as a source of
hidden symmetry in quadratic forms and elliptic curves. Using this we prove
congruences for class numbers, and Selmer groups and Tate--Shafarevich groups
of elliptic curves. This demonstrates that pariah groups play a role in some of
the deepest problems in mathematics, and represents an appearance of pariah
groups in nature.Comment: 20 page
Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of Vlasov equation
On the basis of the antisymmetrized molecular dynamics (AMD) of wave packets
for the quantum system, a novel model (called AMD-V) is constructed by the
stochastic incorporation of the diffusion and the deformation of wave packets
which is calculated by Vlasov equation without any restriction on the one-body
distribution. In other words, the stochastic branching process in molecular
dynamics is formulated so that the instantaneous time evolution of the averaged
one-body distribution is essentially equivalent to the solution of Vlasov
equation. Furthermore, as usual molecular dynamics, AMD-V keeps the many-body
correlation and can naturally describe the fluctuation among many channels of
the reaction. It is demonstrated that the newly introduced process of AMD-V has
drastic effects in heavy ion collisions of 40Ca + 40Ca at 35 MeV/nucleon,
especially on the fragmentation mechanism, and AMD-V reproduces the
fragmentation data very well. Discussions are given on the interrelation among
the frameworks of AMD, AMD-V and other microscopic models developed for the
nuclear dynamics.Comment: 26 pages, LaTeX with revtex and epsf, embedded postscript figure
Antisymmetrized molecular dynamics with quantum branching processes for collisions of heavy nuclei
Antisymmetrized molecular dynamics (AMD) with quantum branching processes is
reformulated so that it can be applicable to the collisions of heavy nuclei
such as Au + Au multifragmentation reactions. The quantum branching process due
to the wave packet diffusion effect is treated as a random term in a
Langevin-type equation of motion, whose numerical treatment is much easier than
the method of the previous papers. Furthermore a new approximation formula,
called the triple-loop approximation, is introduced in order to evaluate the
Hamiltonian in the equation of motion with much less computation time than the
exact calculation. A calculation is performed for the Au + Au central
collisions at 150 MeV/nucleon. The result shows that AMD almost reproduces the
copious fragment formation in this reaction.Comment: 24 pages, 5 figures embedde
Regulatory T cells in melanoma revisited by a computational clustering of FOXP3+ T cell subpopulations
CD4+ T cells that express the transcription factor FOXP3 (FOXP3+ T cells) are commonly regarded as immunosuppressive regulatory T cells (Treg). FOXP3+ T cells are reported to be increased in tumour-bearing patients or animals, and considered to suppress anti-tumour immunity, but the evidence is often contradictory. In addition, accumulating evidence indicates that FOXP3 is induced by antigenic stimulation, and that some non-Treg FOXP3+ T cells, especially memory-phenotype FOXP3low cells, produce proinflammatory cytokines. Accordingly, the subclassification of FOXP3+ T cells is fundamental for revealing the significance of FOXP3+ T cells in tumour immunity, but the arbitrariness and complexity of manual gating have complicated the issue. Here we report a computational method to automatically identify and classify FOXP3+ T cells into subsets using clustering algorithms. By analysing flow cytometric data of melanoma patients, the proposed method showed that the FOXP3+ subpopulation that had relatively high FOXP3, CD45RO, and CD25 expressions was increased in melanoma patients, whereas manual gating did not produce significant results on the FOXP3+ subpopulations. Interestingly, the computationally-identified FOXP3+ subpopulation included not only classical FOXP3high Treg but also memory-phenotype FOXP3low cells by manual gating. Furthermore, the proposed method successfully analysed an independent dataset, showing that the same FOXP3+ subpopulation was increased in melanoma patients, validating the method. Collectively, the proposed method successfully captured an important feature of melanoma without relying on the existing criteria of FOXP3+ T cells, revealing a hidden association between the T cell profile and melanoma, and providing new insights into FOXP3+ T cells and Treg
Spin Polarization and Magneto-Coulomb Oscillations in Ferromagnetic Single Electron Devices
The magneto-Coulomb oscillation, the single electron repopulation induced by
external magnetic field, observed in a ferromagnetic single electron transistor
is further examined in various ferromagnetic single electron devices. In case
of double- and triple-junction devices made of Ni and Co electrodes, the single
electron repopulation always occurs from Ni to Co electrodes with increasing a
magnetic field, irrespective of the configurations of the electrodes. The
period of the magneto-Coulomb oscillation is proportional to the single
electron charging energy. All these features are consistently explained by the
mechanism that the Zeeman effect induces changes of the Fermi energy of the
ferromagnetic metal having a non-zero spin polarizations. Experimentally
determined spin polarizations are negative for both Ni and Co and the magnitude
is larger for Ni than Co as expected from band calculations.Comment: 4 pages, 3 figures, uses jpsj.sty, submitted to J. Phys. Soc. Jp
Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant
In order to improve the energy performance of a district heating and cooling (DHC) plant, the expected performance of the plant is studied using simulations based on mathematical models. A complete heat source system model, equipped with an embedded module that automatically determines the on/off states of heat source equipment using cooling/heating loads, has been developed and validated using actual performance measurements. The mean error between the simulated and measured total energy consumption was 4.2%. Using the developed model, three proposals for improving the plant operation are simulated in order to determine how much energy can be saved.
The simulation result shows that the three proposals, automating primary water flow rate, fully open bypass valve of heat exchanger during no-ice-thermal-discharge period, and increase chilled water supply temperature to 8°C, could reduce plant total energy consumption by 2.1%, 0.7% and 3.3% respectively
Pseudo-distances on symplectomorphism groups and applications to flux theory
Starting from a given norm on the vector space of exact 1-forms of a compact
symplectic manifold, we produce pseudo-distances on its symplectomorphism group
by generalizing an idea due to Banyaga. We prove that in some cases (which
include Banyaga's construction), their restriction to the Hamiltonian
diffeomorphism group is equivalent to the distance induced by the initial norm
on exact 1-forms. We also define genuine "distances to the Hamiltonian
diffeomorphism group" which we use to derive several consequences, mainly in
terms of flux groups.Comment: 21 pages, no figure; v2. various typos corrected, some references
added. Published in Mathematische Zeitschrif
Proton inelastic scattering to continuum studied with antisymmetrized molecular dynamics
Intermediate energy (p,px) reaction is studied with antisymmetrized
molecular dynamics (AMD) in the cases of Ni target with MeV
and C target with 200 and 90 MeV. Angular distributions for
various energies are shown to be reproduced well without any
adjustable parameter, which shows the reliability and usefulness of AMD in
describing light-ion reactions. Detailed analyses of the calculations are made
in the case of Ni target and following results are obtained: Two-step
contributions are found to be dominant in some large angle region and to be
indispensable for the reproduction of data. Furthermore the reproduction of
data in the large angle region \theta \agt 120^\circ for = 100 MeV
is shown to be due to three-step contributions. Angular distributions for
E_{p'} \agt 40 MeV are found to be insensitive to the choice of different
in-medium nucleon-nucleon cross sections and the reason of this
insensitivity is discussed in detail. On the other hand, the total reaction
cross section and the cross section of evaporated protons are found to be
sensitive to . In the course of the analyses of the calculations,
comparison is made with the distorted wave approach.Comment: 16 pages, 7 Postscript figure
Delta degrees of freedom in antisymmetrized molecular dynamics and (p,p') reactions in the delta region
Delta degrees of freedom are introduced into antisymmetrized molecular
dynamics (AMD). This is done by increasing the number of basic states in the
AMD wave function, introducing a Skyrme-type delta-nucleon potential, and
including reactions in the collision description.
As a test of the delta dynamics, the extended AMD is applied to (p,p)
recations at MeV for a C target. It is found that the
ratio and the absolute values for delta peak and quasielastic peak (QEP) in the
C(p,p) reaction are reproduced for angles \Theta_{\rm lab} \agt
40^\circ, pointing to a correct treatment of the delta dynamics in the
extended AMD. For forward angles the QEP is overestimated. The results of the
AMD calculations are compared to one-step Monte Carlo (OSMC) calculations and a
detailed analysis of multi-step and delta potential effects is given. As
important side results we present a way to apply a Gallilei invariant theory
for (N,N) reactions up to MeV which ensures
approximate Lorentz invariance and we discuss how to fix the width parameter
of the single particle momentum distribution for outgoing nucleons in the
AMD calculation.Comment: 28 pages, revtex, 12 figures included, figures are also available
upon request as postscript files from the authors (e-mail:
[email protected]), submitted to Phys. Rev.
- …