7,558 research outputs found

    Nucleon Flow and Fragment Flow in Heavy Ion Reactions

    Full text link
    The collective flow of nucleons and that of fragments in the 12C + 12C reaction below 150 MeV/nucleon are calculated with the antisymmetrized version of molecular dynamics combined with the statistical decay calculation. Density dependent Gogny force is used as the effective interaction. The calculated balance energy is about 100 MeV/nucleon, which is close to the observed value. Below the balance energy, the absolute value of the fragment flow is larger than that of nucleon flow, which is also in accordance with data. The dependence of the flow on the stochastic collision cross section and its origin are discussed. All the results are naturally understood by introducing the concept of two components of flow: the flow of dynamically emitted nucleons and the flow of the nuclear matter which contributes to both the flow of fragments and the flow of nucleons due to the statistical decay.Comment: 20 pages, PostScript figures, LaTeX with REVTeX and EPSF, KUNS 121

    Pariah moonshine

    Full text link
    Finite simple groups are the building blocks of finite symmetry. The effort to classify them precipitated the discovery of new examples, including the monster, and six pariah groups which do not belong to any of the natural families, and are not involved in the monster. It also precipitated monstrous moonshine, which is an appearance of monster symmetry in number theory that catalysed developments in mathematics and physics. Forty years ago the pioneers of moonshine asked if there is anything similar for pariahs. Here we report on a solution to this problem that reveals the O'Nan pariah group as a source of hidden symmetry in quadratic forms and elliptic curves. Using this we prove congruences for class numbers, and Selmer groups and Tate--Shafarevich groups of elliptic curves. This demonstrates that pariah groups play a role in some of the deepest problems in mathematics, and represents an appearance of pariah groups in nature.Comment: 20 page

    Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of Vlasov equation

    Get PDF
    On the basis of the antisymmetrized molecular dynamics (AMD) of wave packets for the quantum system, a novel model (called AMD-V) is constructed by the stochastic incorporation of the diffusion and the deformation of wave packets which is calculated by Vlasov equation without any restriction on the one-body distribution. In other words, the stochastic branching process in molecular dynamics is formulated so that the instantaneous time evolution of the averaged one-body distribution is essentially equivalent to the solution of Vlasov equation. Furthermore, as usual molecular dynamics, AMD-V keeps the many-body correlation and can naturally describe the fluctuation among many channels of the reaction. It is demonstrated that the newly introduced process of AMD-V has drastic effects in heavy ion collisions of 40Ca + 40Ca at 35 MeV/nucleon, especially on the fragmentation mechanism, and AMD-V reproduces the fragmentation data very well. Discussions are given on the interrelation among the frameworks of AMD, AMD-V and other microscopic models developed for the nuclear dynamics.Comment: 26 pages, LaTeX with revtex and epsf, embedded postscript figure

    Antisymmetrized molecular dynamics with quantum branching processes for collisions of heavy nuclei

    Get PDF
    Antisymmetrized molecular dynamics (AMD) with quantum branching processes is reformulated so that it can be applicable to the collisions of heavy nuclei such as Au + Au multifragmentation reactions. The quantum branching process due to the wave packet diffusion effect is treated as a random term in a Langevin-type equation of motion, whose numerical treatment is much easier than the method of the previous papers. Furthermore a new approximation formula, called the triple-loop approximation, is introduced in order to evaluate the Hamiltonian in the equation of motion with much less computation time than the exact calculation. A calculation is performed for the Au + Au central collisions at 150 MeV/nucleon. The result shows that AMD almost reproduces the copious fragment formation in this reaction.Comment: 24 pages, 5 figures embedde

    Regulatory T cells in melanoma revisited by a computational clustering of FOXP3+ T cell subpopulations

    Get PDF
    CD4+ T cells that express the transcription factor FOXP3 (FOXP3+ T cells) are commonly regarded as immunosuppressive regulatory T cells (Treg). FOXP3+ T cells are reported to be increased in tumour-bearing patients or animals, and considered to suppress anti-tumour immunity, but the evidence is often contradictory. In addition, accumulating evidence indicates that FOXP3 is induced by antigenic stimulation, and that some non-Treg FOXP3+ T cells, especially memory-phenotype FOXP3low cells, produce proinflammatory cytokines. Accordingly, the subclassification of FOXP3+ T cells is fundamental for revealing the significance of FOXP3+ T cells in tumour immunity, but the arbitrariness and complexity of manual gating have complicated the issue. Here we report a computational method to automatically identify and classify FOXP3+ T cells into subsets using clustering algorithms. By analysing flow cytometric data of melanoma patients, the proposed method showed that the FOXP3+ subpopulation that had relatively high FOXP3, CD45RO, and CD25 expressions was increased in melanoma patients, whereas manual gating did not produce significant results on the FOXP3+ subpopulations. Interestingly, the computationally-identified FOXP3+ subpopulation included not only classical FOXP3high Treg but also memory-phenotype FOXP3low cells by manual gating. Furthermore, the proposed method successfully analysed an independent dataset, showing that the same FOXP3+ subpopulation was increased in melanoma patients, validating the method. Collectively, the proposed method successfully captured an important feature of melanoma without relying on the existing criteria of FOXP3+ T cells, revealing a hidden association between the T cell profile and melanoma, and providing new insights into FOXP3+ T cells and Treg

    Spin Polarization and Magneto-Coulomb Oscillations in Ferromagnetic Single Electron Devices

    Full text link
    The magneto-Coulomb oscillation, the single electron repopulation induced by external magnetic field, observed in a ferromagnetic single electron transistor is further examined in various ferromagnetic single electron devices. In case of double- and triple-junction devices made of Ni and Co electrodes, the single electron repopulation always occurs from Ni to Co electrodes with increasing a magnetic field, irrespective of the configurations of the electrodes. The period of the magneto-Coulomb oscillation is proportional to the single electron charging energy. All these features are consistently explained by the mechanism that the Zeeman effect induces changes of the Fermi energy of the ferromagnetic metal having a non-zero spin polarizations. Experimentally determined spin polarizations are negative for both Ni and Co and the magnitude is larger for Ni than Co as expected from band calculations.Comment: 4 pages, 3 figures, uses jpsj.sty, submitted to J. Phys. Soc. Jp

    Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant

    Get PDF
    In order to improve the energy performance of a district heating and cooling (DHC) plant, the expected performance of the plant is studied using simulations based on mathematical models. A complete heat source system model, equipped with an embedded module that automatically determines the on/off states of heat source equipment using cooling/heating loads, has been developed and validated using actual performance measurements. The mean error between the simulated and measured total energy consumption was 4.2%. Using the developed model, three proposals for improving the plant operation are simulated in order to determine how much energy can be saved. The simulation result shows that the three proposals, automating primary water flow rate, fully open bypass valve of heat exchanger during no-ice-thermal-discharge period, and increase chilled water supply temperature to 8°C, could reduce plant total energy consumption by 2.1%, 0.7% and 3.3% respectively

    Pseudo-distances on symplectomorphism groups and applications to flux theory

    Full text link
    Starting from a given norm on the vector space of exact 1-forms of a compact symplectic manifold, we produce pseudo-distances on its symplectomorphism group by generalizing an idea due to Banyaga. We prove that in some cases (which include Banyaga's construction), their restriction to the Hamiltonian diffeomorphism group is equivalent to the distance induced by the initial norm on exact 1-forms. We also define genuine "distances to the Hamiltonian diffeomorphism group" which we use to derive several consequences, mainly in terms of flux groups.Comment: 21 pages, no figure; v2. various typos corrected, some references added. Published in Mathematische Zeitschrif

    Proton inelastic scattering to continuum studied with antisymmetrized molecular dynamics

    Get PDF
    Intermediate energy (p,p'x) reaction is studied with antisymmetrized molecular dynamics (AMD) in the cases of 58^{58}Ni target with Ep=120E_p = 120 MeV and 12^{12}C target with Ep=E_p = 200 and 90 MeV. Angular distributions for various EpE_{p'} energies are shown to be reproduced well without any adjustable parameter, which shows the reliability and usefulness of AMD in describing light-ion reactions. Detailed analyses of the calculations are made in the case of 58^{58}Ni target and following results are obtained: Two-step contributions are found to be dominant in some large angle region and to be indispensable for the reproduction of data. Furthermore the reproduction of data in the large angle region \theta \agt 120^\circ for EpE_{p'} = 100 MeV is shown to be due to three-step contributions. Angular distributions for E_{p'} \agt 40 MeV are found to be insensitive to the choice of different in-medium nucleon-nucleon cross sections σNN\sigma_{NN} and the reason of this insensitivity is discussed in detail. On the other hand, the total reaction cross section and the cross section of evaporated protons are found to be sensitive to σNN\sigma_{NN}. In the course of the analyses of the calculations, comparison is made with the distorted wave approach.Comment: 16 pages, 7 Postscript figure

    Delta degrees of freedom in antisymmetrized molecular dynamics and (p,p') reactions in the delta region

    Get PDF
    Delta degrees of freedom are introduced into antisymmetrized molecular dynamics (AMD). This is done by increasing the number of basic states in the AMD wave function, introducing a Skyrme-type delta-nucleon potential, and including NNNΔNN\leftrightarrow N\Delta reactions in the collision description. As a test of the delta dynamics, the extended AMD is applied to (p,p') recations at Elab=800E_{\rm lab}=800 MeV for a 12^{12}C target. It is found that the ratio and the absolute values for delta peak and quasielastic peak (QEP) in the 12^{12}C(p,p') reaction are reproduced for angles \Theta_{\rm lab} \agt 40^\circ, pointing to a correct treatment of the delta dynamics in the extended AMD. For forward angles the QEP is overestimated. The results of the AMD calculations are compared to one-step Monte Carlo (OSMC) calculations and a detailed analysis of multi-step and delta potential effects is given. As important side results we present a way to apply a Gallilei invariant theory for (N,N') reactions up to Elab800E_{\rm lab} \approx 800 MeV which ensures approximate Lorentz invariance and we discuss how to fix the width parameter ν\nu of the single particle momentum distribution for outgoing nucleons in the AMD calculation.Comment: 28 pages, revtex, 12 figures included, figures are also available upon request as postscript files from the authors (e-mail: [email protected]), submitted to Phys. Rev.
    corecore