24 research outputs found

    On the integrated continuum radio spectrum of supernova remnant W44 (G34.7-0.4): new insights from Planck

    Full text link
    In this paper, the integrated continuum radio spectrum of supernova remnant (SNR) W44 was analyzed up to 70 GHz, testing the different emission models that can be responsible for its particular shape. The observations by the Planck space telescope made possible to analyze the high frequency part of radio emission from SNRs. Although the quality of radio continuum spectrum (a high scatter of data points at same frequencies) prevents us to make definite conclusions, the possibility of spinning dust emission detection towards this remnant is emphasized. In addition, a concave-down feature, due to synchrotron losses, can not be definitely dismissed by the present knowledge of the integrated radio continuum spectrum of this SNR.Comment: submitted to Serb. Astron. J.; minor revisio

    An analysis of the possible thermal emission at radio frequencies from an evolved supernova remnant HB 3 (G132.7 + 1.3): revisited

    Get PDF
    It has recently been reported that some of the flux density values for an evolved supernova remnant (SNR) HB 3 (G132.7 + 1.3) are not accurate. In this work we revised an analysis of the possible thermal emission at radio frequencies from the SNR HB 3 using the recently published, corrected, flux density values. A model including a sum of non-thermal (purely synchrotron) and thermal (bremsstrahlung) component is applied for fitting integrated radio spectrum of the SNR. The contribution of thermal component in total volume emissivity at 1GHz1 \mathrm{GHz} was estimated to be 37\approx37 %. The ambient density was also estimated to be n9cm3n\approx 9 \mathrm{cm}^{-3} for the T=104K\mathrm{T}=10^{4} \mathrm{K}. Again, we obtained the relatively significant presence of thermal emission at radio frequencies from the SNR so we could support interaction between SNR HB 3 and adjacent molecular cloud associated with the H {\sc ii} region W3. Our model estimates for thermal component contribution to total volume emissivity at 1GHz1 \mathrm{GHz} and ambient density are similar to those obtained earlier (40\approx40 %, 10cm3\approx10 \mathrm{cm^{-3}}). It is clear that the corrected flux density values do not change the basic conclusions.Comment: 6 pages, 1 figur

    Revealing the nature of central emission nebulae in the dwarf galaxy NGC 185

    Full text link
    In this paper we present new optical observations of the galaxy NGC 185 intended to reveal the status of supernova remnants (SNRs) in this dwarf companion of the Andromeda galaxy. Previously, it was reported that this galaxy hosts one SNR. Our deep photometric study with the 2m telescope at Rozhen National Astronomical Observatory using narrow-band Hα\alpha and [SII] filters revealed complex structure of the interstellar medium in the center of the galaxy. To confirm the classification and to study the kinematics of the detected nebulae, we carried out spectroscopic observations using the SCORPIO multi-mode spectrograph at the 6m telescope at the Special Astrophysical Observatory of the Russian Academy of Science, both in low- and high-resolution modes. We also searched the archival X-ray and radio data for counterparts of the candidate SNRs identified by our optical observations. Our observations imply the presence of one more SNR, one possible HII region previously cataloged as part of an SNR, and the presence of an additional source of shock ionization in one low-brightness PN. We detected enhanced [SII]/H_alpha and [NII]/H_alpha line ratios, as well as relatively high (up to 90 km s1^{-1}) expansion velocities of the two observed nebulae, motivating their classification as SNRs (with diameters of 45 pc and 50 pc), confirmed by both photometric and spectral observations. The estimated electron density of emission nebulae is 30 - 200 cm3^{-3}. Archival XMM-Newton observations indicate the presence of an extended, low-brightness, soft source in projection of one of the optical SNRs, whereas the archival VLA radio image shows weak, unresolved emission in the center of NGC 185.Comment: 15 pages, 14 figures, accepted for publication in A&

    Murchison Widefield Array and XMM-Newton observations of the Galactic supernova remnant G5.9+3.1

    Get PDF
    In this paper we discuss the radio continuum and X-ray properties of the so-far poorly studied Galactic supernova remnant (SNR) G5.9+3.1. We present the radio spectral energy distribution (SED) of the Galactic SNR G5.9+3.1 obtained with the Murchison Widefield Array (MWA). Combining these new observations with the surveys at other radio continuum frequencies, we discuss the integrated radio continuum spectrum of this particular remnant. We have also analyzed an archival XMM-Newton observation, which represents the first detection of X-ray emission from this remnant. The SNR SED is very well explained by a simple power-law relation. The synchrotron radio spectral index of G5.9+3.1, is estimated to be 0.42±\pm0.03 and the integrated flux density at 1GHz to be around 2.7Jy. Furthermore, we propose that the identified point radio source, located centrally inside the SNR shell, is most probably a compact remnant of the supernova explosion. The shell-like X-ray morphology of G5.9+3.1 as revealed by XMM-Newton broadly matches the spatial distribution of the radio emission, where the radio-bright eastern and western rims are also readily detected in the X-ray while the radio-weak northern and southern rims are weak or absent in the X-ray. Extracted MOS1+MOS2+PN spectra from the whole SNR as well as the north, east, and west rims of the SNR are fit successfully with an optically thin thermal plasma model in collisional ionization equilibrium with a column density N_H~0.80x102210^{22} cm2^{-2} and fitted temperatures spanning the range kT~0.14-0.23keV for all of the regions. The derived electron number densities n_e for the whole SNR and the rims are also roughly comparable (ranging from ~0.20f1/20.20f^{-1/2} cm3^{-3} to ~0.40f1/20.40f^{-1/2} cm3^{-3}, where f is the volume filling factor). We also estimate the swept-up mass of the X-ray emitting plasma associated with G5.9+3.1 to be ~46f1/2M46f^{-1/2}M_{\odot}.Comment: Accepted for publication in A&
    corecore