6 research outputs found

    Small signal stability analysis of a four-machine system with placement of multi-terminal high voltage direct current link

    Get PDF
    Inter-area oscillation caused by weak interconnected lines or low generator inertia is a critical problem facing power systems. This study investigated the performance analysis of a multi-terminal high voltage direct current (MTDC) on the damping of inter-area oscillations of a modified two-area four-machine network. Two case studies were considered, utilising scenario 1: a double alternating current (AC) circuit in linking Bus_10 and Bus_11; and scenario 2: a three-terminal line commutated converter high voltage direct current system in linking Bus_6 and Bus_11 into Bus_9. It was found that scenario 2 utilising MTDC link with a robust controller provided quick support in minimising the network oscillations following a fault on the system. The MTDC converter controllers’ setup offered sufficient support for the inertia of the AC system, thus providing efficient damping of the inter-area oscillation of the system

    A Review of LCC-HVDC and VSC-HVDC Technologies and Applications

    Get PDF
    High Voltage Direct Current (HVDC) systems has been an alternative method of transmitting electric power from one location to another with some inherent advantages over AC transmission systems. The efficiency and rated power carrying capacity of direct current transmission lines highly depends on the converter used in transforming the current from one form to another (AC to DC and vice versa). A well configured converter reduces harmonics, increases power transfer capabilities, and reliability in that it offers high tolerance to fault along the line. Different HVDC converter topologies have been proposed, built and utilised all over the world. The two dominant types are the line commutated converter LCC and the voltage source converter VSC. This review paper evaluates these two types of converters, their operational characteristics, power rating capability, control capability and losses. The balance of the paper addresses their applications, advantages, limitations and latest developments with these technologies

    Dynamic Voltage Stability Studies using a Modified IEEE 30-Bus System

    No full text
    Power System stability is an essential study in the planning and operation of an efficient, economic, reliable and secure electric power system because it encompasses all the facet of power systems operations, from planning, to conceptual design stages of the project as well as during the systems operating life span. This paper presents different scenario of power system stability studies on a modified IEEE 30-bus system which is subjected to different faults conditions. A scenario whereby the longest high voltage alternating current (HVAC) line is replaced with a high voltage direct current (HVDC) line was implemented. The results obtained show that the HVDC line enhances system stability more compared to the contemporary HVAC line. Dynamic analysis using RMS simulation tool was used on DigSILENT PowerFactory

    Decentralized Virtual Impedance- Conventional Droop Control for Power Sharing for Inverter-Based Distributed Energy Resources of a Microgrid

    No full text
    The work presents the power-sharing in a standalone low voltage AC microgrid consisting of three parallel grid supporting inverters using a virtual impedance-based droop system. Typically, isolated microgrids suffer unique challenges regarding voltage, current, frequency regulation, power flow control, and power-sharing due to the absence of a stiff AC grid source. This work investigated the power flow and sharing technical challenges using three inverter-based distributed energy sources, three static loads, and one dynamic load. These distributed energy sources are interconnected with the loads using low voltage line impedance within the microgrid to implement the uneven power distribution. Furthermore, a distributed grid supporting control utilizing virtual impedance is proposed in this work to improve power-sharing. The microgrid model is developed with the MATLAB Simulink environment and validated using the Opal RT OP4510 simulator. The proposed technique ensured improved power-sharing and mitigated the effect of voltage drops introduced through a virtual impedance using combined positive and negative virtual

    Decentralized Virtual Impedance- Conventional Droop Control for Power Sharing for Inverter-Based Distributed Energy Resources of a Microgrid

    No full text
    The work presents the power-sharing in a standalone low voltage AC microgrid consisting of three parallel grid supporting inverters using a virtual impedance-based droop system. Typically, isolated microgrids suffer unique challenges regarding voltage, current, frequency regulation, power flow control, and power-sharing due to the absence of a stiff AC grid source. This work investigated the power flow and sharing technical challenges using three inverter-based distributed energy sources, three static loads, and one dynamic load. These distributed energy sources are interconnected with the loads using low voltage line impedance within the microgrid to implement the uneven power distribution. Furthermore, a distributed grid supporting control utilizing virtual impedance is proposed in this work to improve power-sharing. The microgrid model is developed with the MATLAB Simulink environment and validated using the Opal RT OP4510 simulator. The proposed technique ensured improved power-sharing and mitigated the effect of voltage drops introduced through a virtual impedance using combined positive and negative virtual

    Assessing the Effects of Coronavirus Outbreaks on the Demand for Electronic Health In Nigeria

    No full text
    Electronic health (e-Health) and Mobile health (m-Health) is perceived as opportunity for patients to access their health care providers in the developing countries during coronavirus pandemic as it has been found to contribute tremendously to health care provision in the developed world even before the pandemic. This study attempts to assess how residents of developing countries annexe e-health and m-health during coronavirus outbreak. More specifically, the study analyses the demand for and adoption of electronic health in the face of coronavirus pandemic in Nigeria (a developing country) using Borgu local government, Niger state as case study. It was found that during the outbreak, residents of the local government did not significantly adopt electronic health during the pandemic majorly due to access to community health worker and cost of adopting electronic health facilities. It was recommended that government and relevant health care agencies that deal policy formulation take necessary measure to encourage wider acceptance of electronic health in Nigeria
    corecore