275 research outputs found

    Rapid Ultrasound-Assisted Starch Extraction from Sago Pith Waste (SPW) for the Fabrication of Sustainable Bioplastic Film.

    Full text link
    The present study was conducted to optimize the extraction yield of starch from sago (Metroxylon sagu) pith waste (SPW) with the assistance of ultrasound ensued by the transformation of extracted starch into a higher value-added bioplastic film. Sago starch with extraction yield of 71.4% was successfully obtained using the ultrasound-assisted extraction, with the following conditions: particle size <250 µm, solid loading of 10 wt.%, ultrasonic amplitude of 70% and duty cycle of 83% in 5 min. The rapid ultrasound approach was proven to be more effective than the conventional extraction with 60.9% extraction yield in 30 min. Ultrasound-extracted starch was found to exhibit higher starch purity than the control starch as indicated by the presence of lower protein and ash contents. The starch granules were found to have irregular and disrupted surfaces after ultrasonication. The disrupted starch granules reduced the particle size and increased the swelling power of starch which was beneficial in producing a film-forming solution. The ultrasound-extracted sago starch was subsequently used to prepare a bioplastic film via solution casting method. A brownish bioplastic film with tensile strength of 0.9 ± 0.1 MPa, Young's modulus of 22 ± 0.8 MPa, elongation at break of 13.6 ± 2.0% and water vapour permeability (WVP) of 1.11 ± 0.1 × 10-8 g m-1 s-1 Pa-1 was obtained, suggesting its feasibility as bioplastic material. These findings provide a means of utilization for SPW which is in line with the contemporary trend towards greener and sustainable products and processes

    The acceptability and usability of two HIV self‐test kits among men who have sex with men: a randomised crossover trial

    Full text link
    Objectives: To compare the usability and acceptability of oral fluid- and blood-based HIV self-test kits among men who have sex with men in Australia. Design: Randomised crossover trial. Setting, participants: Gay, bisexual, and other men aged 18 years or older who have sex with men, who attended two metropolitan sexual health clinics in Sydney and Melbourne, 7 January – 10 December 2019. Main outcome measures: Ease of use of HIV self-test kits; preferred HIV self-test type; difficulties encountered during HIV self-testing. Results: 170 men were recruited (median age, 34 years; interquartile range, 29–43 years); 144 identified as gay (85%), 96 were born outside Australia (57%). Participants were more likely to report the oral fluid HIV self-test was easy to use than the blood-based self-test (oral fluid, 99%; blood, 86%; odds ratio [OR], 3.0; 95% confidence interval [CI], 1.4–6.6). The oral fluid test was preferred by 98 participants (58%; 95% CI, 50–65%), the blood-based test by 69 (41%; 95% CI, 33–48%). Difficulties with the oral fluid test kit identified by observing nurses included problems placing the buffer solution into the stand (40 of 170 participants, 24%) and not swabbing both gums (23 of 169, 14%); difficulties with the blood-based test kit included problems filling the device test channel (69 of 170, 41%) and squeezing the finger firmly enough to generate a blood drop (42 of 170, 25%). No participant received an invalid result with the oral fluid self-test; two of 162 participants (1%) received invalid results with the blood self-test. After adjusting for age, education level, and ethnic background, characteristics associated with higher odds of using HIV self-testing in the future were overseas birth (adjusted OR, 3.07; 95% CI, 1.42–6.64), and self-evaluated ease of use and confidence in using the kits. Conclusion: It is important to provide options for obtaining both oral fluid- and blood-based HIV self-tests. The usability and acceptability of both kits were high, but the ease of use and perceived accuracy influenced test kit preference

    Association of a genetic variant in the apolipoprotein A5 gene with the metabolic syndrome in Chinese

    Get PDF
    Poster Session II: Translational & Clinica: no. 11published_or_final_versionThe 16th Medical Research Conference, The University of Hong Kong, Hong Kong, 22 January 2011. In Hong Kong Medical Journal, 2011, v. 17 suppl. 1, p. 18, abstract no. 1

    Immunological assays for chemokine detection in in-vitro culture of CNS cells

    Get PDF
    Herein we review the various methods currently in use for determining the expression of chemokines by CNS cells in vitro. Chemokine detection assays are used in conjuction with one another to provide a comprehensive, biologically relevant assessment of the chemokines which is necessary for correct data interpretation of a specific observed biological effect. The methods described include bioassays for soluble chemokine receptors, RNA extraction, RT-PCR, Real - time quantitative PCR, gene array analysis, northern blot analysis, Ribonuclease Protection assay, Flow cytometry, ELISPOT, western blot analysis, and ELISA. No single method of analysis meets the criteria for a comprehensive, biologically relevant assessment of the chemokines, therefore more than one assay might be necessary for correct data interpretation, a choice that is based on development of a scientific rationale for the method with emphasis on the reliability and relevance of the method

    Temporal Expression of Chemokines Dictates the Hepatic Inflammatory Infiltrate in a Murine Model of Schistosomiasis

    Get PDF
    Schistosomiasis continues to be an important cause of parasitic morbidity and mortality world-wide. Determining the molecular mechanisms regulating the development of granulomas and fibrosis will be essential for understanding how schistosome antigens interact with the host environment. We report here the first whole genome microarray analysis of the murine liver during the progression of Schistosoma japonicum egg-induced granuloma formation and hepatic fibrosis. Our results reveal a distinct temporal relationship between the expression of chemokine subsets and the recruitment of cells to the infected liver. Genes up-regulated earlier in the response included T- and B-cell chemoattractants, reflecting the early recruitment of these cells illustrated by flow cytometry. The later phases of the response corresponded with peak recruitment of eosinophils, neutrophils, macrophages and myofibroblasts/hepatic stellate cells (HSCs) and the expression of chemokines with activity for these cells including CCL11 (eotaxin 1), members of the Monocyte-chemoattractant protein family (CCL7, CCL8, CCL12) and the Hepatic Stellate Cell/Fibrocyte chemoattractant CXCL1. Peak expression of macrophage chemoattractants (CCL6, CXCL14) and markers of alternatively activated macrophages (e.g. Retnla) during this later phase provides further evidence of a role for these cells in schistosome-induced pathology. Additionally, we demonstrate that CCL7 immunolocalises to the fibrotic zone of granulomas. Furthermore, striking up-regulation of neutrophil markers and the localisation of neutrophils and the neutrophil chemokine S100A8 to fibrotic areas suggest the involvement of neutrophils in S. japonicum-induced hepatic fibrosis. These results further our understanding of the immunopathogenic and, especially, chemokine signalling pathways that regulate the development of S. japonicum-induced granulomas and fibrosis and may provide correlative insight into the pathogenesis of other chronic inflammatory diseases of the liver where fibrosis is a common feature

    Decision Tree Algorithms Predict the Diagnosis and Outcome of Dengue Fever in the Early Phase of Illness

    Get PDF
    Dengue illness appears similar to other febrile illness, particularly in the early stages of disease. Consequently, diagnosis is often delayed or confused with other illnesses, reducing the effectiveness of using clinical diagnosis for patient care and disease surveillance. To address this shortcoming, we have studied 1,200 patients who presented within 72 hours from onset of fever; 30.3% of these had dengue infection, while the remaining 69.7% had other causes of fever. Using body temperature and the results of simple laboratory tests on blood samples of these patients, we have constructed a decision algorithm that is able to distinguish patients with dengue illness from those with other causes of fever with an accuracy of 84.7%. Another decision algorithm is able to predict which of the dengue patients would go on to develop severe disease, as indicated by an eventual drop in the platelet count to 50,000/mm3 blood or below. Our study shows a proof-of-concept that simple decision algorithms can predict dengue diagnosis and the likelihood of developing severe disease, a finding that could prove useful in the management of dengue patients and to public health efforts in preventing virus transmission

    Rapid Sequencing of the Bamboo Mitochondrial Genome Using Illumina Technology and Parallel Episodic Evolution of Organelle Genomes in Grasses

    Get PDF
    Background: Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. Methodology/Principal Findings: We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the wellresolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significan

    Induction of Apoptosis Coupled to Endoplasmic Reticulum Stress in Human Prostate Cancer Cells by n-butylidenephthalide

    Get PDF
    BACKGROUND: N-butylidenephthalide (BP) exhibits antitumor effect in a variety of cancer cell lines. The objective of this study was to obtain additional insights into the mechanisms involved in BP induced cell death in human prostate cancer cells. METHODS/PRINCIPAL FINDINGS: Two human prostate cancer cell lines, PC-3 and LNCaP, were treated with BP, and subsequently evaluated for their viability and cell cycle profiles. BP caused cell cycle arrest and cell death in both cell lines. The G0/G1 phase arrest was correlated with increase levels of CDK inhibitors (p16, p21 and p27) and decrease of the checkpoint proteins. To determine the mechanisms of BP-induced growth arrest and cell death in prostate cancer cell lines, we performed a microarray study to identify alterations in gene expression induced by BP in the LNCaP cells. Several BP-induced genes, including the GADD153/CHOP, an endoplasmic reticulum stress (ER stress)-regulated gene, were identified. BP-induced ER stress was evidenced by increased expression of the downstream molecules GRP78/BiP, IRE1-α and GADD153/CHOP in both cell lines. Blockage of IRE1-α or GADD153/CHOP expression by siRNA significantly reduced BP-induced cell death in LNCaP cells. Furthermore, blockage of JNK1/2 signaling by JNK siRNA resulted in decreased expression of IRE1-α and GADD153/CHOP genes, implicating that BP-induced ER stress may be elicited via JNK1/2 signaling in prostate cancer cells. BP also suppressed LNCaP xenograft tumor growth in NOD-SCID mice. It caused 68% reduction in tumor volume after 18 days of treatment. CONCLUSIONS: Our results suggest that BP can cause G0/G1 phase arrest in prostate cancer cells and its cytotoxicity is mediated by ER stress induction. Thus, BP may serve as an anticancer agent by inducing ER stress in prostate cancer
    corecore