49 research outputs found

    Whole proteomes as internal standards in quantitative proteomics

    Get PDF
    As mass-spectrometry-based quantitative proteomics approaches become increasingly powerful, researchers are taking advantage of well established methodologies and improving instrumentation to pioneer new protein expression profiling methods. For example, pooling several proteomes labeled using the stable isotope labeling by amino acids in cell culture (SILAC) method yields a whole-proteome stable isotope-labeled internal standard that can be mixed with a tissue-derived proteome for quantification. By increasing quantitative accuracy in the analysis of tissue proteomes, such methods should improve integration of protein expression profiling data with transcriptomic data and enhance downstream bioinformatic analyses. An accurate and scalable quantitative method to analyze tumor proteomes at the depth of several thousand proteins provides a powerful tool for global protein quantification of tissue samples and promises to redefine our understanding of tumor biology

    AAK1 Identified as an Inhibitor of Neuregulin-1/ErbB4-Dependent Neurotrophic Factor Signaling Using Integrative Chemical Genomics and Proteomics

    Get PDF
    SummaryTarget identification remains challenging for the field of chemical biology. We describe an integrative chemical genomic and proteomic approach combining the use of differentially active analogs of small molecule probes with stable isotope labeling by amino acids in cell culture-mediated affinity enrichment, followed by subsequent testing of candidate targets using RNA interference-mediated gene silencing. We applied this approach to characterizing the natural product K252a and its ability to potentiate neuregulin-1 (Nrg1)/ErbB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4)-dependent neurotrophic factor signaling and neuritogenesis. We show that AAK1 (adaptor-associated kinase 1) is a relevant target of K252a, and that the loss of AAK1 alters ErbB4 trafficking and expression levels, providing evidence for a previously unrecognized role for AAK1 in Nrg1-mediated neurotrophic factor signaling. Similar strategies should lead to the discovery of novel targets for therapeutic development

    Discovery of a Cushing’s syndrome protein kinase A mutant that biases signaling through type I AKAPs

    Get PDF
    Adrenal Cushing’s syndrome is a disease of cortisol hypersecretion often caused by mutations in protein kinase A catalytic subunit (PKAc). Using a personalized medicine screening platform, we discovered a Cushing’s driver mutation, PKAc-W196G, in ~20% of patient samples analyzed. Proximity proteomics and photokinetic imaging reveal that PKAc W196G is unexpectedly distinct from other described Cushing’s variants, exhibiting retained association with type I regulatory subunits (RI) and their corresponding A kinase anchoring proteins (AKAPs). Molecular dynamics simulations predict that substitution of tryptophan-196 with glycine creates a 653–cubic angstrom cleft between the catalytic core of PKAc W196G and type II regulatory subunits (RII), but only a 395–cubic angstrom cleft with RI. Endocrine measurements show that overexpression of RIα or redistribution of PKAc W196G via AKAP recruitment counteracts stress hormone overproduction. We conclude that a W196G mutation in the kinase catalytic core skews R subunit selectivity and biases AKAP association to drive Cushing’s syndrome. </jats:p

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Properties of 13

    No full text

    A combined bioinformatics and proteomics approach identifies DNA repair factors regulated by the APC/C

    No full text
    Abstract Our genome is constantly challenged by endogenous and exogenous factors that induce a variety of DNA lesions. DNA double strand breaks are considered to most toxic type of DNA damage, and cells have evolved powerful mechanisms that can detect and repair such lesions. Two main mechanisms responsible for repair of DNA double strand breaks are Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). The choice between these two types of DNA double strand break repair is strongly influenced by the cell cycle. Only cells in late S and G2 phase of the cell cycle can employ HR and this differential activity is underscored by a strict requirement for Cdk activity for HR. Mechanisms that enable HR during S-phase have been previously identified, but how exactly HR DNA repair is inactivated during the mitosis-to-G1 transition is poorly understood. Based on the observed strict cell-cycle regulation of HR repair, a role for the mitotic E3 ligase APC/C was suggested. Here we present a combined proteomics and bioinformatics approach to identify APC/C targets and reveal components of DNA double strand break repair that are potential targets of the APC/C. Firstly, proteins were identified that contain evolutionary conserved and sterically accessibly APC/C targeting domains (KEN and D-boxes) using bioinformatics. Within this group of proteins with a known role in DNA repair were highlighted. Subsequently, a quantitative mass-spec approach was used to identify those proteins, whose abundance was readily lost upon mitotic exit. Reassuringly, we could identify many previously identified APC/C targets, that all showed loss of abundance during mitotic exit. We subsequently searched for DNA repair-associated factors that were down-regulated during mitotic exit and among those, we identified multiple topoisomerase subunits as likely APC/C substrates. We could subsequently confirm a role for the APC/C in regulating protein levels of these novel substrates using RNAi-mediated depletion of Cdh1 and live cell microscopy. In conclusion, we here present a novel method to identify APC/C targets and used this approach to uncover novel regulatory aspects of cell cycle-regulated DNA repair. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 2960. doi:10.1158/1538-7445.AM2011-2960</jats:p

    Phosphoproteomic Approach to Characterize Protein Mono- and Poly(ADP-ribosyl)ation Sites from Cells

    No full text
    Poly­(ADP-ribose), or PAR, is a cellular polymer implicated in DNA/RNA metabolism, cell death, and cellular stress response via its role as a post-translational modification, signaling molecule, and scaffolding element. PAR is synthesized by a family of proteins known as poly­(ADP-ribose) polymerases, or PARPs, which attach PAR polymers to various amino acids of substrate proteins. The nature of these polymers (large, charged, heterogeneous, base-labile) has made these attachment sites difficult to study by mass spectrometry. Here we propose a new pipeline that allows for the identification of mono­(ADP-ribosyl)­ation and poly­(ADP-ribosyl)­ation sites via the enzymatic product of phosphodiesterase-treated ADP-ribose, or phospho­(ribose). The power of this method lies in the enrichment potential of phospho­(ribose), which we show to be enriched by phosphoproteomic techniques when a neutral buffer, which allows for retention of the base-labile attachment site, is used for elution. Through the identification of PARP-1 in vitro automodification sites as well as endogenous ADP-ribosylation sites from whole cells, we have shown that ADP-ribose can exist on adjacent amino acid residues as well as both lysine and arginine in addition to known acidic modification sites. The universality of this technique has allowed us to show that enrichment of ADP-ribosylated proteins by macrodomain leads to a bias against ADP-ribose modifications conjugated to glutamic acids, suggesting that the macrodomain is either removing or selecting against these distinct protein attachments. Ultimately, the enrichment pipeline presented here offers a universal approach for characterizing the mono- and poly­(ADP-ribosyl)­ated proteome

    Phosphoproteomic Approach to Characterize Protein Mono- and Poly(ADP-ribosyl)ation Sites from Cells

    No full text
    Poly­(ADP-ribose), or PAR, is a cellular polymer implicated in DNA/RNA metabolism, cell death, and cellular stress response via its role as a post-translational modification, signaling molecule, and scaffolding element. PAR is synthesized by a family of proteins known as poly­(ADP-ribose) polymerases, or PARPs, which attach PAR polymers to various amino acids of substrate proteins. The nature of these polymers (large, charged, heterogeneous, base-labile) has made these attachment sites difficult to study by mass spectrometry. Here we propose a new pipeline that allows for the identification of mono­(ADP-ribosyl)­ation and poly­(ADP-ribosyl)­ation sites via the enzymatic product of phosphodiesterase-treated ADP-ribose, or phospho­(ribose). The power of this method lies in the enrichment potential of phospho­(ribose), which we show to be enriched by phosphoproteomic techniques when a neutral buffer, which allows for retention of the base-labile attachment site, is used for elution. Through the identification of PARP-1 in vitro automodification sites as well as endogenous ADP-ribosylation sites from whole cells, we have shown that ADP-ribose can exist on adjacent amino acid residues as well as both lysine and arginine in addition to known acidic modification sites. The universality of this technique has allowed us to show that enrichment of ADP-ribosylated proteins by macrodomain leads to a bias against ADP-ribose modifications conjugated to glutamic acids, suggesting that the macrodomain is either removing or selecting against these distinct protein attachments. Ultimately, the enrichment pipeline presented here offers a universal approach for characterizing the mono- and poly­(ADP-ribosyl)­ated proteome

    Comparing SILAC- and Stable Isotope Dimethyl-Labeling Approaches for Quantitative Proteomics

    No full text
    Stable isotope labeling is widely used to encode and quantify proteins in mass-spectrometry-based proteomics. We compared metabolic labeling with stable isotope labeling by amino acids in cell culture (SILAC) and chemical labeling by stable isotope dimethyl labeling and find that they have comparable accuracy and quantitative dynamic range in unfractionated proteome analyses and affinity pull-down experiments. Analyzing SILAC- and dimethyl-labeled samples together in single liquid chromatography–mass spectrometric analyses minimizes differences under analytical conditions, allowing comparisons of quantitative errors introduced during sample processing. We find that SILAC is more reproducible than dimethyl labeling. Because proteins from metabolically labeled populations can be combined before proteolytic digestion, SILAC is particularly suited to studies with extensive sample processing, such as fractionation and enrichment of peptides with post-translational modifications. We compared both methods in pull-down experiments using a kinase inhibitor, dasatinib, and tagged GRB2-SH2 protein as affinity baits. We describe a StageTip dimethyl-labeling protocol that we applied to in-solution and in-gel protein digests. Comparing the impact of post-digest isotopic labeling on quantitative accuracy, we demonstrate how specific experimental designs can benefit most from metabolic labeling approaches like SILAC and situations where chemical labeling by stable isotope-dimethyl labeling can be a practical alternative
    corecore