10,145 research outputs found

    The Suppression of Radiation Reaction and Laser Field Depletion in Laser-Electron beam interaction

    Full text link
    The effects of radiation reaction (RR) have been studied extensively by using the ultraintense laser interacts with the counter-propagating relativistic electron. At the laser intensity at the order of 102310^{23} W/cm2^2, the effects of RR are significant in a few laser period for a relativistic electron. However, the laser at such intensity is tightly focused and the laser energy is usually assumed to be fixed. Then, the signal of RR and energy conservation cannot be guaranteed. To assess the effects of RR in a tightly focused laser pulse and the evolution of the laser energy, we simulate this interaction with a beam of 10910^9 electrons by means of Particle-in-Cell (PIC) method. We observed that the effects of RR are suppressed due to the ponderomotive force and accompanied by a non-negligible amount of laser field energy reduction. This is due to the ponderomotive force that prevents the electrons from approaching the center of the laser pulse and leads to the interaction at weaker field region. At the same time, the laser energy is absorbed through ponderomotive acceleration. Thus, the kinetic energy of the electron beam has to be carefully selected such that the effects of RR become obvious.Comment: 6 pages, 3 figure

    Effect of dead space on avalanche speed

    Get PDF
    The effects of dead space (the minimum distance travelled by a carrier before acquiring enough energy to impact ionize) on the current impulse response and bandwidth of an avalanche multiplication process are obtained from a numerical model that maintains a constant carrier velocity but allows for a random distribution of impact ionization path lengths. The results show that the main mechanism responsible for the increase in response time with dead space is the increase in the number of carrier groups, which qualitatively describes the length of multiplication chains. When the dead space is negligible, the bandwidth follows the behavior predicted by Emmons but decreases as dead space increase
    • …
    corecore