Ferromagnetism is observed below 10 K in [Bi0.75Te0.125Mn0.125]Te. This
material has the BiTe structure, which is made from the stacking of two
Te-Bi-Te-Bi-Te blocks and one Bi-Bi block per unit cell. Crystal structure
analysis shows that Mn is localized in the Bi2 blocks, and is accompanied by an
equal amount of TeBi anti-site occupancy in the Bi2Te3 blocks. These TeBi
anti-site defects greatly enhance the Mn solubility. This is demonstrated by
comparison of the [Bi1-xMnx]Te and [Bi1-2xTexMnx]Te series; in the former, the
solubility is limited to x = 0.067, while the latter has xmax = 0.125. The
magnetism in [Bi1-xMnx]Te changes little with x, while that for
[Bi1-2xTexMnx]Te shows a clear variation, leading to ferromagnetism for x >
0.067. Magnetic hysteresis and the anomalous Hall Effect are observed for the
ferromagnetic samples.Comment: Accepted for publication in Phys. Rev.