251 research outputs found

    Thermal signatures of Little-Parks effect in the heat capacity of mesoscopic superconducting rings

    Full text link
    We present the first measurements of thermal signatures of the Little-Parks effect using a highly sensitive nanocalorimeter. Small variations of the heat capacity C_pC\_p of 2.5 millions of non interacting micrometer-sized superconducting rings threaded by a magnetic flux Φ\Phi have been measured by attojoule calorimetry. This non-invasive method allows the measurement of thermodynamic properties -- and hence the probing of the energy levels -- of nanosystems without perturbing them electrically. It is observed that C_pC\_p is strongly influenced by the fluxoid quantization (Little-Parks effect) near the critical temperature T_cT\_c. The jump of C_pC\_p at the superconducting phase transition is an oscillating function of Φ\Phi with a period Φ_0=h/2e\Phi\_0=h/2e, the magnetic flux quantum, which is in agreement with the Ginzburg-Landau theory of superconductivity.Comment: To be published in Physical Review B, Rapid Communication

    Thermodynamics of small systems by nanocalorimetry: from physical to biological nano-objects

    Full text link
    Membrane based nanocalorimeters have been developed for ac calorimetry experiments. It has allowed highly sensitive measurements of heat capacity from solid state physics to complex systems like polymers and proteins. In this article we review what has been developed in ac calorimetry toward the measurement of very small systems. Firstly, at low temperature ac calorimetry using silicon membrane permits the measurement of superconducting sample having geometry down to the nanometer scale. New phase transitions have been found in these nanosystems illustrated by heat capacity jumps versus the applied magnetic field. Secondly, a sensor based on ultra-thin polymer membrane will be presented. It has been devoted to thermal measurements of nanomagnetic systems at intermediate temperature (20K to 300K). Thirdly, three specific polyimide membrane based sensors have been designed for room temperature measurements. One is devoted to phase transitions detection in polymer, the second one to protein folding/unfolding studies and the third one will be used for the study of heat release in living cells. The possibility of measuring systems out of equilibrium will be emphasized

    CD36 plays an important role in the clearance of oxLDL and associated age-dependent sub-retinal deposits

    Get PDF
    Age-related macular degeneration (AMD) represents the major cause of vision loss in industrialized nations. Laminar deposits in Bruch's membrane (BM) are among the first prominent histopathologic features, along with drusen formation, and have been found to contain oxidized lipids. Increases in concentrations of oxidized LDL (oxLDL) in plasma are observed with age and high fat high (HFHC) cholesterol diet. CD36 is the principal receptor implicated in uptake of oxLDL, and is expressed in the retinal pigment epithelium (RPE). We determined if CD36 participates in oxLDL uptake in RPE and correspondingly in clearance of sub-retinal deposits. Uptake of oxLDL by RPE in vitro and in vivo was CD36-dependent. CD36 deficiency in mice resulted in age-associated accumulation of oxLDL and sub-retinal BM thickening, despite fed a regular diet. Conversely, treatment of HFHC-fed ApoE null mice with a CD36 agonist, EP80317 (300 μg/kg/day), markedly diminished thickening of BM, and partially preserved (in part) photoreceptor function. In conclusion, our data uncover a new role for CD36 in the clearance of oxidized lipids from BM and in the prevention of age-dependent sub-retinal laminar deposits

    Single-shot qubit readout in circuit Quantum Electrodynamics

    Get PDF
    The future development of quantum information using superconducting circuits requires Josephson qubits [1] with long coherence times combined to a high-fidelity readout. Major progress in the control of coherence has recently been achieved using circuit quantum electrodynamics (cQED) architectures [2, 3], where the qubit is embedded in a coplanar waveguide resonator (CPWR) which both provides a well controlled electromagnetic environment and serves as qubit readout. In particular a new qubit design, the transmon, yields reproducibly long coherence times [4, 5]. However, a high-fidelity single-shot readout of the transmon, highly desirable for running simple quantum algorithms or measur- ing quantum correlations in multi-qubit experiments, is still lacking. In this work, we demonstrate a new transmon circuit where the CPWR is turned into a sample-and-hold detector, namely a Josephson Bifurcation Amplifer (JBA) [6, 7], which allows both fast measurement and single-shot discrimination of the qubit states. We report Rabi oscillations with a high visibility of 94% together with dephasing and relaxation times longer than 0:5 \mu\s. By performing two subsequent measurements, we also demonstrate that this new readout does not induce extra qubit relaxation.Comment: 14 pages including 4 figures, preprint forma
    corecore