3 research outputs found

    Mapping of schistosomiasis and soil-transmitted helminthiases across 15 provinces of Angola.

    Get PDF
    IntroductionSchistosomiasis (SCH) and soil transmitted helminthiases (STH) have been historically recognized as a major public health problem in Angola. However, lack of reliable, country wide prevalence data on these diseases has been a major hurdle to plan and implement programme actions to target these diseases. This study aimed to characterize SCH and STH prevalence and distribution in Angola.MethodsA country wide mapping was conducted in October 2018 (1 province) and from July to December 2019 (14 provinces) in school aged (SAC) children in 15 (of 18) provinces in Angola, using WHO protocols and procedures. A total of 640 schools and an average of 50 students per school (N = 31,938 children) were sampled. Stool and urine samples were collected and processed using the Kato-Katz method and Urine Filtration. Prevalence estimates for SCH and STH infections were calculated for each province and district with 95% confidence intervals. Factors associated with SCH and STH infection, respectively, were explored using multivariable logistic regression accounting for clustering by school.ResultsOf the 131 districts surveyed, 112 (85.5%) are endemic for STH, 30 (22.9%) have a prevalence above 50%, 24 (18.3%) are at moderate risk (prevalence 20%-50%), and 58 (44.3%) are at low risk (50% prevalence), 59 (45.0%) are at moderate risk (10%-50% prevalence), and 57 (43.5%) are at low risk (ConclusionsThis mapping exercise provides essential information to Ministry of Health in Angola to accurately plan and implement SCH and STH control activities in the upcoming years. Data also provides a useful baseline contribution for Angola to track its progress towards the 2030 NTD roadmap targets set by WHO

    Latent class analysis to evaluate performance of point-of-care CCA for low-intensity Schistosoma mansoni infections in Burundi

    Get PDF
    Abstract Background Kato-Katz examination of stool smears is the field-standard method for detecting Schistosoma mansoni infection. However, Kato-Katz misses many active infections, especially of light intensity. Point-of-care circulating cathodic antigen (CCA) is an alternative field diagnostic that is more sensitive than Kato-Katz when intensity is low, but interpretation of CCA-trace results is unclear. To evaluate trace results, we tested urine and stool specimens from 398 pupils from eight schools in Burundi using four approaches: two in Burundi and two in a laboratory in Leiden, the Netherlands. In Burundi, we used Kato-Katz and point-of-care CCA (CCAB). In Leiden, we repeated the CCA (CCAL) and also used Up-Converting Phosphor Circulating Anodic Antigen (CAA). Methods We applied Bayesian latent class analyses (LCA), first considering CCA traces as negative and then as positive. We used the LCA output to estimate validity of the prevalence estimates of each test in comparison to the population-level infection prevalence and estimated the proportion of trace results that were likely true positives. Results Kato-Katz yielded the lowest prevalence (6.8%), and CCAB with trace considered positive yielded the highest (53.5%). There were many more trace results recorded by CCA in Burundi (32.4%) than in Leiden (2.3%). Estimated prevalence with CAA was 46.5%. LCA indicated that Kato-Katz had the lowest sensitivity: 15.9% [Bayesian Credible Interval (BCI): 9.2–23.5%] with CCA-trace considered negative and 15.0% with trace as positive (BCI: 9.6–21.4%), implying that Kato-Katz missed approximately 85% of infections. CCAB underestimated disease prevalence when trace was considered negative and overestimated disease prevalence when trace was considered positive, by approximately 12 percentage points each way, and CAA overestimated prevalence in both models. Our results suggest that approximately 52.2% (BCI: 37.8–5.8%) of the CCAB trace readings were true infections. Conclusions Whether measured in the laboratory or the field, CCA outperformed Kato-Katz at the low infection intensities in Burundi. CCA with trace as negative likely missed many infections, whereas CCA with trace as positive overestimated prevalence. In the absence of a field-friendly gold standard diagnostic, the use of a variety of diagnostics with differing properties will become increasingly important as programs move towards elimination of schistosomiasis. It is clear that CCA is a valuable tool for the detection and mapping of S. mansoni infection in the field and CAA may be a valuable field tool in the future

    Additional file 1: of Latent class analysis to evaluate performance of point-of-care CCA for low-intensity Schistosoma mansoni infections in Burundi

    No full text
    Table S1. Bayesian Deviance Information Criterion (DIC) from models with different covariances fitted. Table S2. Summary statistics by school and prevalence estimates for each separate test by school. Table S3. Comparison of CCA results in Burundi and Leiden. Table S4. Test result combinations overall and by school, when CCA trace was considered negative and positive. Table S5. Estimate and 95% BCIs of difference between same estimates from trace negative and trace positive models presented in Table 4. Table S6. Output from LCA when specificity of CAA fixed to 100%. Table S7. Estimate and 95% BCIs of difference between same estimates from different models. Table S8 Estimated test and infection prevalence when specificity of CAA fixed to 100%. Fig. S1. Sensitivity of models to prior assumptions. Code S1. Code for running the LCA in R2OpenBugs (DOCX 845 kb
    corecore