3 research outputs found

    Screening of polymorphisms in the folate pathway in Turkish pediatric Acute Lymphoblastic Leukemia patients

    Get PDF
    Background and aim: Folate metabolic pathway plays a significant role in leukemogenesis because of its necessity for nucleotide synthesis and DNA methylation. Folate deficiency causes DNA damage. Thus polymorphisms of folate-related genes may affect the susceptibility to childhood Acute Lymphoblastic Leukemia (ALL). MTHFR (Methylenetetrahydrofolate Reductase), DHFR (Dihydrofolate reductase), CBS (Cystathionine b-synthase) and TYMS (Thymidylate Synthase) have an important role in folate pathway because their activated variants modulate synthesis of DNA and levels of folate. In this study, we aimed to investigate whether polymorphisms in genes related to folate metabolic pathway influence the risk to childhood ALL.Subject and methods: The patient groups who were diagnosed with childhood ALL at Losante Pediatric Hematology-Oncology Hospital and healthy control groups were included in the study. MTHFR 677 CT, MTHFR 1298 A-C, CBS 844ins68, DHFR 19-bp and TYMS 1494del6 polymorphisms were screened. Genotyping of these polymorphisms was performed by Restriction Fragment Length Polymorphism (RFLP) analysis and Real Time Polymerase chain Reaction (Real Time-PCR).Results: In total, we have screened 5 polymorphisms in the studied genes. The results were compared between childhood ALL patients and healthy groups. Genotype frequencies of MTHFR 677 C-T, MTHFR 1298 A-C, CBS 844ins68 and DHFR 19-bp del were similar for childhood ALL patients and healthy groups. However, statistical results showed that TYMS 1494del6 may be associated with ALL pathogenesis (p < 0.001).Conclusion: We showed that TYMS polymorphism (rs2853542) may be associated with ALL pathogenesis. In addition, our results demonstrated that MTHFR, DHFR and CBS do not affect development of leukemia. Our study displays also importance as it is the first screening results to identify association with the studied polymorphisms in Turkish patients with childhood ALL and determination of the frequency in Turkish population

    Detection of TET2, KRAS and CBL variants by Next Generation Sequencing and analysis of their correlation with JAK2 and FLT3 in childhood AML

    Get PDF
    Background: Acute myeloid leukemia (AML) is a heterogeneous clonal disorder in terms of cytogenetic and molecular aberrations. Ten-Eleven-Translocation 2 (TET2), Kirsten rat sarcoma viral oncogene homolog (KRAS), and Casitas B-cell lymphoma (CBL) have an important role pathogenesis of acute myeloid leukemia (AML) and their activated mutations confer proliferative and survival signals. Aim: In this study, we aimed to find possible genetic markers for molecular analysis in childhood AML by screening hot-spot exons of TET2, KRAS, and CBL using Next Generation Sequencing (NGS) analysis. In addition, association between found variants and mutations of Januse Kinase-2 (JAK2) and Fms-Related Tyrosine Kinase (FLT3) were analyzed which are important prognostic risk factors for AML. Methods: Eight patients who were diagnosed with pediatric AML at Losante Pediatric Hematology–Oncology Hospital were included to the study. Hot-spot exons of TET2, KRAS and CBL genes were screened using the NGS method. Furthermore, FLT3-Internal Tandem Duplicate (FLT3-ITD) and JAK2-V617F were analyzed by Real Time Polymerase chain Reaction (Real Time-PCR). Results: In total, we identified 20 variants in studied genes by NGS. In our patient group, 16 variants in the TET2 (seven novel, seven missense and two silent), two variants in the KRAS (one missense and one intronic) and two variants in the CBL (two novel) were found. All of AML patients were found negative for JAK V617 F. Three of the eight patients (37.5%) showed mutations of both FLT3-ITD and TET2, KRAS, CBL. Conclusion: We found novel mutations for TET2, KRAS, and CBL. The detected variants in this article seem to be the first screening results of genes studied by NGS in childhood AML patients. Our results also showed some degree of association between FLT3-ITD and TET2, KRAS, CBL mutations

    Tomato Powder Modulates NF-κB, mTOR, and Nrf2 Pathways during Aging in Healthy Rats

    No full text
    Purpose. In the present study, we aimed to investigate the effects of tomato powder (TP) on glucose and lipid metabolism, as well as oxidative stress and the NF-κB, mTOR, and Nrf2 pathways during the aging process in healthy rats. Methods and Results. Male Wistar rats were randomly assigned to four groups as follows: (i) Control group 1 (n=15, 3-week old): rats were fed standard diet for 7 weeks; (ii) TP group 1 (n=15, 3-week old): rats were fed standard diet supplemented with TP for 7 weeks; (iii) Control group 2 (n=15, 8-week old): rats were fed standard diet for 69 weeks; and (iv) TP group 2 (8-week old): rats were fed standard diet supplemented with TP for 69 weeks. TP supplementation significantly reduced the hyperglycemia, hypertriglyceridemia, and hypercholesterolemia and improved liver function and kidney function in 77-week old rats compared with the control animals (P<0.05). In addition, TP significantly decreased the serum and liver MDA levels (P<0.003 and P<0.001, respectively) while increasing the activities of liver SOD (P<0.001), CAT (P<0.008), and GPx (P<0.01) compared with the control groups in both 10-week-old and 77-week-old rats (P<0.05). Age-related increases in phosphorylation of NF-κBp65, mTOR, 4E-BP1, and P70S6K were observed in livers of 77-week-old rats compared to those of 10-week-old rats (P<0.001). TP supplementation decreased the expression of NF-κBp65 and activation of mTOR, 4E-BP1, and P70S6K in livers of 77-week-old rats compared to the control animals. Moreover, TP supplementation significantly elevated Nrf2 expression in livers of both 10-week-old and 77-week-old rats (P<0.05). Conclusion. TP ameliorates age-associated inflammation and oxidative stress through the inhibition of NF-κBp65, mTOR pathways, and Nrf2 activation may explain the observed improvement in glucose and lipid metabolism as well as the improved liver and kidney functions
    corecore