16 research outputs found

    Clinical quantification of the integrin Ī±vĪ²6 by [18F]FB-A20FMDV2 positron emission tomography in healthy and fibrotic human lung (PETAL Study)

    Get PDF
    Ā© 2019, The Author(s). Purpose: The RGD-integrin, Ī±vĪ²6, plays a role in the pathogenesis of pulmonary fibrosis through activation of transforming growth factor beta (TGFĪ²). This study sought to quantify expression of Ī±vĪ²6 in the lungs of healthy humans and subjects with pulmonary fibrosis using the Ī±vĪ²6-selective [18F]FB-A20FMDV2 PET ligand. Methods: [18F]FB-A20FMDV2 PET/CT scans were performed in healthy subjects and those with fibrotic lung disease. Standard uptake values (SUV) and volume of distribution (VT) were used to quantify Ī±vĪ²6 expression. In subjects with fibrotic lung disease, qualitative assessment of the relationship between Ī±vĪ²6 expression and the distribution of fibrosis on high resolution computed tomography was conducted. Results: A total of 15 participants (6 healthy, 7 with idiopathic pulmonary fibrosis (IPF) and 2 with connective tissue disease (CTD) associated PF) were enrolled. VT and SUV of [18F]FB-A20FMDV2 were increased in the lungs of subjects with pulmonary fibrosis (PF) compared with healthy subjects. Geometric mean VT (95% CI) was 0.88 (0.60, 1.29) mL/cm3 for healthy subjects, and 1.40 (1.22, 1.61) mL/cm3 for subjects with IPF; and SUV was 0.54 (0.36, 0.81) g/mL for healthy subjects and 1.03 (0.86, 1.22) g/mL for subjects with IPF. The IPF/healthy VT ratio (geometric mean, (95% CI of ratio)) was 1.59 (1.09, 2.32) (probability ratio > 1 = 0.988)) and the SUV ratio was 1.91 (1.27, 2.87) (probability ratio > 1 = 0.996). Increased uptake of [18F]FB-A20FMDV2 in PF was predominantly confined to fibrotic areas. [18F]FB-A20FMDV2 measurements were reproducible at an interval of 2 weeks. [18F]FB-A20FMDV2 was safe and well tolerated. Conclusions: Lung uptake of [18F]FB-A20FMDV2, a measure of expression of the integrin Ī±vĪ²6, was markedly increased in subjects with PF compared with healthy subjects

    Hippocampal neuroinflammation, functional connectivity, and depressive symptoms in multiple sclerosis

    Get PDF
    Depression, a condition commonly comorbid with multiple sclerosis (MS), is associated more generally with elevated inflammatory markers and hippocampal pathology. We hypothesized that neuroinflammation in the hippocampus is responsible for depression associated with MS. We characterized the relationship between depressive symptoms and hippocampal microglial activation in patients with MS using the 18-kDa translocator protein radioligand [18F]PBR111. To evaluate pathophysiologic mechanisms, we explored the relationships between hippocampal neuroinflammation, depressive symptoms, and hippocampal functional connectivities defined by resting-state functional magnetic resonance imaging. Methods The Beck Depression Inventory (BDI) was administered to 11 patients with MS and 22 healthy control subjects before scanning with positron emission tomography and functional magnetic resonance imaging. We tested for higher [18F]PBR111 uptake in the hippocampus of patients with MS relative to healthy control subjects and examined the correlations between [18F]PBR111 uptake, BDI scores, and hippocampal functional connectivities in the patients with MS. Results Patients with MS had an increased hippocampal [18F]PBR111 distribution volume ratio relative to healthy control subjects (p = .024), and the hippocampal distribution volume ratio was strongly correlated with the BDI score in patients with MS (r = .86, p = .006). Hippocampal functional connectivities to the subgenual cingulate and prefrontal and parietal regions correlated with BDI scores and [18F]PBR111 distribution volume ratio. Conclusions Our results provide evidence that hippocampal microglial activation in MS impairs the brain functional connectivities in regions contributing to maintenance of a normal affective state. Our results suggest a rationale for the responsiveness of depression in some patients with MS to effective control of brain neuroinflammation. Our findings also lend support to further investigation of the role of inflammatory processes in the pathogenesis of depression more generally

    Studies and application of the enzymes of fluorometabolite biosynthesis in Streptomyces cattleya

    Get PDF
    This thesis focuses on studies investigating the structure of intermediates involved in fluorometabolite biosynthesis, and the potential applications of the fluorinase enzyme in positron emission tomography (PET). Chapter 1 introduces the rare natural occurrence of fluorinated compounds. The bacterium Streptomyces cattleya is known to biosynthesise two fluorinated secondary metabolites: the toxin fluoroacetate (FAc) and the antibiotic 4-fluorothreonine (4-FT). The enzymes and intermediates identified on this fluorometabolite biosynthetic pathway in S. cattleya, prior to this research, are discussed in detail. Chapter 2 presents studies towards the unambiguous structural identification of (3R,4S)-5- deoxy-5-fluoro-D-ribulose-1-phosphate (5-FRulP) as the third fluorinated intermediate on the biosynthetic pathway to fluoroacetate and 4-fluorothreonine in S. cattleya. Chapter 3 describes the synthetic routes to key molecules, necessary as reference compounds and substrates, to underpin the subsequent studies in this thesis. In particular, synthetic routes to 5'-deoxy-5'-fluoroadenosine (5'-FDA), 5'-deoxy-5'-fluoroinosine (5'-FDI), 5-deoxy-5-fluoro-D-ribose (5-FDR) and 5-deoxy-5-fluoro-D-xylose (5-FDX) are described. Chapter 4 describes the use of the fluorinase enzyme from S. cattleya as a tool for the synthesis of new [Ā¹āøF]-labelled sugars with potential application in positron emission tomography (PET). A new route to 5-deoxy-5-[Ā¹āøF]fluoro-D-ribose ([Ā¹āøF]FDR) is developed in a two-step enzymatic synthesis. A total of three potential radiotracers ([Ā¹āøF]FDA, [Ā¹āøF]FDR and [Ā¹āøF]FDI) are synthesised using fluorinase-coupled enzyme reactions. In addition, in vitro studies are reported with these [Ā¹āøF]-labelled sugars to investigate their uptake and potential as PET radiotracers in cancer cells. A preliminary rat imaging study with [Ā¹āøF]FDA is reported. Chapter 5 details the experimental procedures for the compounds synthesised in this research and the biological procedures for chemo-enzymatic syntheses and protein purification

    Fluorinase: a tool for the synthesis of F-18-labeled sugars and nucleosides for PET

    No full text
    There is an increasing interest in the preparation of F-18-labeled radiopharmaceuticals with potential applications in PET for medicinal imaging. Appropriate synthetic methods require a quick and efficient route in which to incorporate the F-18 into a ligand, due to the relatively short half-life of the F-18 isotope. Enzymatic methods are rare in this area; however, the discovery of a fluorinating enzyme from Streptomyces cattleya (EC 2.5.1.63) has opened up the possibility of the enzymatic synthesis and formation of C-F-18 bonds from the [F-18]fluoride ion. In this article, the development of enzymatic preparations of F-18-labeled sugars and nucleosides as potential radiotracers using the fluorinase from S. cattleya for PET applications is reviewed. Enzymatic reactions are not traditional in PET synthesis, but this enzyme has some attractive features. The enzyme is available in an overexpressed form from Escherichia coil and it is relatively stable and can be easily purified and manipulated. Most notably, it utilizes [F-18] fluoride, the form of the isotope normally generated by the cyclotron and usually in very high specific radioactivity. The disadvantage with the enzyme is that it is substrate specific; however, when the fluorinase is used in combination biotransformations with a second or third enzyme, then a range of radiolabeled nucleosides and ribose sugars can be prepared. The fluorinase enzyme has emerged as a curiosity from biosynthesis studies, but it now has some potential as a new catalyst for F-18 incorporation for PET syntheses. The focus is now on delivering a user-friendly catalyst to the PET synthesis community and establishing a clinical role for some of the F-18-labeled molecules available using this technology.</p

    Fluorinase: a tool for the synthesis of F-18-labeled sugars and nucleosides for PET

    No full text
    There is an increasing interest in the preparation of F-18-labeled radiopharmaceuticals with potential applications in PET for medicinal imaging. Appropriate synthetic methods require a quick and efficient route in which to incorporate the F-18 into a ligand, due to the relatively short half-life of the F-18 isotope. Enzymatic methods are rare in this area; however, the discovery of a fluorinating enzyme from Streptomyces cattleya (EC 2.5.1.63) has opened up the possibility of the enzymatic synthesis and formation of C-F-18 bonds from the [F-18]fluoride ion. In this article, the development of enzymatic preparations of F-18-labeled sugars and nucleosides as potential radiotracers using the fluorinase from S. cattleya for PET applications is reviewed. Enzymatic reactions are not traditional in PET synthesis, but this enzyme has some attractive features. The enzyme is available in an overexpressed form from Escherichia coil and it is relatively stable and can be easily purified and manipulated. Most notably, it utilizes [F-18] fluoride, the form of the isotope normally generated by the cyclotron and usually in very high specific radioactivity. The disadvantage with the enzyme is that it is substrate specific; however, when the fluorinase is used in combination biotransformations with a second or third enzyme, then a range of radiolabeled nucleosides and ribose sugars can be prepared. The fluorinase enzyme has emerged as a curiosity from biosynthesis studies, but it now has some potential as a new catalyst for F-18 incorporation for PET syntheses. The focus is now on delivering a user-friendly catalyst to the PET synthesis community and establishing a clinical role for some of the F-18-labeled molecules available using this technology.</p

    The identification of (3R,4S)-5-fluoro-5-deoxy-D-ribulose-1-phosphate as an intermediate in fluorometabolite biosynthesis in Streptomyces cattleya

    No full text
    (3R,4S)-5-Fluoro-5-deoxy-D-ribulose-1-phosphate (5-FDRulP) has been identified as the third fluorinated intermediate on the biosynthetic pathway to fluoroacetate and 4-fluorothreonine in Streptomyces cattleya. 5-FDRulP is generated after formation of 5 '-fluoro-5 '-deoxyadenosine (5 '-FDA) and then phosphorolysis of 5 '-FDA to 5-fluoro-5-deoxy-D-ribose-1-phosphate (5-FDRP) by the action of a purine nucleoside phosphorylase. An isomerase mediates the conversion of 5-FDRP to 5-FDRulP. The identity of the (3R,4S) diastereoisomer of 5-FDRulP was established by comparative F-19{H-1} NMR studies whereby 5-FDRulP that accumulated in a cell free extract of S. cattleya, was treated with a phytase to generate the non-phosphorylated sugar, 5-fluoro-5-deoxy-D-ribulose (5-FDRul). This S. cattleya product was compared to the product of an in-vitro biotransformation where separately 5-fluoro5-deoxy-D-ribose and 5-fluoro-5-deoxy-D-xylose were converted to 5-fluoro-5-deoxy-D-ribulose and 5-fluoro-5-deoxy-D-xylulose respectively by the action of glucose isomerase. It was demonstrated that 5-fluoro-5-deoxy-D-ribose gave the identical diastereoisomer to that observed from 5-FDRulP. (c) 2007 Elsevier Inc. All rights reserved.</p

    The identification of (3R,4S)-5-fluoro-5-deoxy-D-ribulose-1-phosphate as an intermediate in fluorometabolite biosynthesis in Streptomyces cattleya

    No full text
    (3R,4S)-5-Fluoro-5-deoxy-D-ribulose-1-phosphate (5-FDRulP) has been identified as the third fluorinated intermediate on the biosynthetic pathway to fluoroacetate and 4-fluorothreonine in Streptomyces cattleya. 5-FDRulP is generated after formation of 5 '-fluoro-5 '-deoxyadenosine (5 '-FDA) and then phosphorolysis of 5 '-FDA to 5-fluoro-5-deoxy-D-ribose-1-phosphate (5-FDRP) by the action of a purine nucleoside phosphorylase. An isomerase mediates the conversion of 5-FDRP to 5-FDRulP. The identity of the (3R,4S) diastereoisomer of 5-FDRulP was established by comparative F-19{H-1} NMR studies whereby 5-FDRulP that accumulated in a cell free extract of S. cattleya, was treated with a phytase to generate the non-phosphorylated sugar, 5-fluoro-5-deoxy-D-ribulose (5-FDRul). This S. cattleya product was compared to the product of an in-vitro biotransformation where separately 5-fluoro5-deoxy-D-ribose and 5-fluoro-5-deoxy-D-xylose were converted to 5-fluoro-5-deoxy-D-ribulose and 5-fluoro-5-deoxy-D-xylulose respectively by the action of glucose isomerase. It was demonstrated that 5-fluoro-5-deoxy-D-ribose gave the identical diastereoisomer to that observed from 5-FDRulP. (c) 2007 Elsevier Inc. All rights reserved.</p
    corecore