10 research outputs found

    Bond formation at polycarbonate | X interfaces (X = Al2_2O3_3, TiO2_2, TiAlO2_2) studied by theory and experiments

    Full text link
    Interfacial bond formation during sputter deposition of metal oxide thin films onto polycarbonate (PC) is investigated by ab initio molecular dynamics simulations and X-ray photoelectron spectroscopy (XPS) analysis of PC | X interfaces (X = Al2_2O3_3, TiO2_2, TiAlO2_2). Generally, the predicted bond formation is consistent with the experimental data. For all three interfaces, the majority of bonds identified by XPS are (C-O)-metal bonds, whereas C-metal bonds are the minority. Compared to the PC | Al2_2O3_3 interface, the PC | TiO2_2 and PC | TiAlO2_2 interfaces exhibit a reduction in the measured interfacial bond density by ~ 75 and ~ 65%, respectively. Multiplying the predicted bond strength with the corresponding experimentally determined interfacial bond density shows that Al2_2O3_3 exhibits the strongest interface with PC, while TiO2_2 and TiAlO2_2 exhibit ~ 70 and ~ 60% weaker interfaces, respectively. This can be understood by considering the complex interplay between the metal oxide composition, the bond strength as well as the population of bonds that are formed across the interface

    Spinodal decomposition of reactively sputtered (V0.64Al0.36 (0.49)N-0.51 thin films

    No full text
    We investigate the decomposition mechanisms of metastable cubic (c-)(V0.64Al0.36)(0.49)N-0.51 thin films, grown by reactive high power pulsed magnetron sputtering, by combination of structural and compositional characterization at the nanometer scale with density functional theory (DFT) calculations. Based on thermodynamic considerations of partial derivative(2)Delta G/partial derivative x(2) = 0.35. While no indications for spinodal decomposition are observable from laboratory and synchroton diffraction data after annealing in Ar atmosphere at 1300 degrees C, the formation of wurtzite (w-)AlN is evident after annealing at 900 degrees C by utilizing high energy synchrotron X-ray diffraction. However, the complementary nature of elemental V and Al maps, obtained by energy dispersive X-ray spectroscopy in scanning transmission electron microscopy mode, imply spinodal decomposition of c-(V0.64Al0.36)(0.49)N-0.51 into V- and Al-rich cubic nitride phases after annealing at 900 degrees C. These chemical modulations are quantified by atom probe tomography and maximum variations of x in V1-xAlxN are in the range of 0.36 to 0.50. The magnitude of the compositional modulations is enhanced after annealing at 1100 degrees C as x varies on average between 0.30 and 0.61, while the modulation wavelength remains unchanged at approximately 8 nm. Based on DFT data, the local x variation from 0.30 to 0.61 would cause lattice parameter variations from 4.111 to 4.099 angstrom. This difference corresponds to a shift of the (200) peak from 44.0 to 44.1 degrees. As the maximum decomposition-induced peak separation magnitude of 0.1 degrees is significantly smaller than the measured full width at half maximum of 0.4 degrees, spinodal decomposition cannot be unravelled by diffraction data. However, consistent with DFT predictions, spinodal decomposition in c-(V0.64Al0.36)(0.49)N-0.51 is revealed by chemical composition characterization at the nanometer scale

    Aluminum tantalum oxide thin films deposited at low temperature by pulsed direct current reactive magnetron sputtering for dielectric applications

    No full text
    This research aims at studying aluminum tantalum oxide thin films (AlxTayOz) deposited at low temperature for dielectric applications. These ternary oxide layers are synthesized at 180 °C by physical vapor deposition (PVD), specifically the mid-frequency pulsed direct current reactive magnetron sputtering. The deposition process uses targets made of a mixture of aluminum and tantalum in various proportions. Four target compositions are studied containing 95 at.%, 90 at.%, 80 at.%, and 70 at.% of aluminum, corresponding to 5 at.%, 10 at.%, 20 at.%, and 30 at.% of tantalum, respectively. The ternary oxide thin films of AlxTayOz are compared to aluminum oxide (AlxOz) and tantalum oxide (TayOz) layers produced in the same experimental conditions. The AlxTayOz thin films are dense, uniform, and amorphous regardless of the experimental conditions used in this study. Their chemical composition changes as a function of the target composition. The oxygen flow used during deposition also affects the chemical composition of the oxide layers and the deposition rate. The oxide thin films with tantalum are deposited at higher deposition rates and contain more oxygen. Tantalum also promotes the amorphization of the oxide layers. The highest dielectric strength is measured for the thin film containing a low amount of tantalum combined with a high amount of oxygen

    On the determination of the thermal shock parameter of MAX phases: A combined experimental-computational study

    Full text link
    Thermal shock resistance is one of the performance-defining properties for applications where extreme temperature gradients are required. The thermal shock resistance of a material can be described by means of the thermal shock parameter RT. Here, the thermo-mechanical properties required for the calculation of RT are quantum-mechanically predicted, experimentally determined, and compared for Ti3AlC2 and Cr2AlC MAX phases. The coatings are synthesized utilizing direct current magnetron sputtering without additional heating, followed by vacuum annealing. It is shown that the RT of both Ti3AlC2 and Cr2AlC obtained via simulations are in good agreement with the experimentally obtained ones. Comparing the MAX phase coatings, both experiments and simulations indicate superior thermal shock behavior of Ti3AlC2 compared to Cr2AlC, attributed primarily to the larger linear coefficient of thermal expansion of Cr2AlC. The results presented herein underline the potential of ab initio calculations for predicting the thermal shock behavior of ionically-covalently bonded materials.Comment: submitted to Journal of the European Ceramic Society, 6 figures, 4 tables, 37 pages tota

    Spinodal decomposition of reactively sputtered (V0.64Al0.36)0.49N0.51 thin films

    No full text
    We investigate the decomposition mechanisms of metastable cubic (c-)(V0.64_{0.64}Al0.36_{0.36})0.49_{0.49}N0.51_{0.51} thin films, grown by reactive high power pulsed magnetron sputtering, by combination of structural and compositional characterization at the nanometer scale with density functional theory (DFT) calculations. Based on thermodynamic considerations of 2G/x2<0∂^2∆G/∂x^2 < 0, spinodal decomposition is expected for c-V1x_{1-x}Alx_xN with xx ≥ 0.35. While no indications for spinodal decomposition are observable from laboratory and synchroton diffraction data after annealing in Ar atmosphere at 1300 °C, the formation of wurtzite (w-)AlN is evident after annealing at 900 °C by utilizing high energy synchrotron X-ray diffraction. However, the complementary nature of elemental V and Al maps, obtained by energy dispersive X-ray spectroscopy in scanning transmission electron microscopy mode, imply spinodal decomposition of c-(V0.64_{0.64}Al0.36_{0.36})0.49_{0.49}N0.51_{0.51} into V- and Al-rich cubic nitride phases after annealing at 900 °C. These chemical modulations are quantified by atom probe tomography and maximum variations of x in V1x_{1-x}Alx_xN are in the range of 0.36 to 0.50. The magnitude of the compositional modulations is enhanced after annealing at 1100 °C as x varies on average between 0.30 and 0.61, while the modulation wavelength remains unchanged at approximately 8 nm. Based on DFT data, the local x variation from 0.30 to 0.61 would cause lattice parameter variations from 4.111 to 4.099 Å. This difference corresponds to a shift of the (200) peak from 44.0 to 44.1°. As the maximum decomposition-induced peak separation magnitude of 0.1° is significantly smaller than the measured full width at half maximum of 0.4°, spinodal decomposition cannot be unravelled by diffraction data. However, consistent with DFT predictions, spinodal decomposition in c-(V0.64_{0.64}Al0.36_{0.36})0.49_{0.49}N0.51_{0.51} is revealed by chemical composition characterization at the nanometer scale

    Influence of ion irradiation-induced defects on phase formation and thermal stability of Ti0.27_{0.27}Al0.21_{0.21}N0.52_{0.52} coatings

    No full text
    The influence of changes induced by ion irradiation on structure and thermal stability of metastable cubic (Ti,Al)N coatings deposited by cathodic arc evaporation is systematically investigated by correlating experiments and theory. Decreasing the nitrogen deposition pressure from 5.0 to 0.5 Pa results in an ion flux-enhancement by a factor of three and an increase of the average ion energy from 15 to 30 eV, causing the stress-free lattice parameter to expand from 4.170 to 4.206 Å, while the chemical composition of Ti0.27_{0.27}Al0.21_{0.21}N0.52_{0.52} remains unchanged. The 0.9% lattice parameter increase is a consequence of formation of Frenkel pairs induced by ion bombardment, as revealed by density functional theory (DFT) simulations. The influence of the presence of Frenkel pairs on the thermal stability of metastable Ti0.27_{0.27}Al0.21_{0.21}N0.52_{0.52} is investigated by scanning transmission electron microscopy, differential scanning calorimetry, atom probe tomography and in-situ synchrotron X-ray powder diffraction. It is demonstrated that the ion flux and ion energy induced formation of Frenkel pairs increases the thermal stability as the Al diffusion enabled crystallization of the wurtzite solid solution is retarded. This can be rationalized by DFT predictions since the presence of Frenkel pairs increases the activation energy for Al diffusion by up to 142%. Hence, the thermal stability enhancement is caused by a hitherto unreported mechanism - the Frenkel pair impeded Al mobility and thereby retarded formation of wurtzite solid solution

    NOMAD: A distributed web-based platform for managing materials science research data

    No full text
    NOMAD lets you manage and share your materials science data in a way that makes it truly useful to you, your group, and the community. Materials science research is becoming increasingly data-driven, which requires more effort to manage, share, and publish data. NOMAD is a web-based application that provides data management for materials science research data. In addition to core data management functions like uploading and sharing files, NOMAD allows structured data entry using customizable forms providing the software with electronic laboratory notebook (ELN) functionalities. It automatically extracts rich metadata from supported file formats, normalizes and converts data from these formats, and provides a faceted search with materials science-specific filters based on extracted metadata. NOMAD integrates data analysis and machine learning tools. Installations of NOMAD can be connected to share data between research institutes and can publish data to an open central NOMAD service. The NOMAD software is distributed as a Docker image to create data management services and as a Python package to automate the client's use of these services
    corecore