92 research outputs found

    T Cells Activated by Zwitterionic Molecules Prevent Abscesses Induced by Pathogenic Bacteria

    Get PDF
    Immunologic paradigms classify bacterial polysaccharides as T cell-independent antigens. However, these models fail to explain how zwitterionic polysaccharides (Zps) confer protection against intraabdominal abscess formation in a T cell-dependent manner. Here, we demonstrate that Zps elicit a potent CD4+ T cell response in vitro that requires available major histocompatibility complex class II molecules on antigen-presenting cells. Specific chemical modifications to Zps show that: 1) the activity is specific for carbohydrate structure, and 2) the proliferative response depends upon free amino and carboxyl groups on the repeating units of these polysaccharides. Peptides synthesized to mimic the zwitterionic charge motif associated with Zps also exhibited these biologic properties. Lysine-aspartic acid (KD) peptides with more than 15 repeating units stimulated CD4+ T cells in vitro and conferred protection against abscesses induced by bacteria such as Bacteroides fragilis and Staphylococcus aureus. Evidence for the biologic importance of T cell activation by these zwitterionic polymers was provided when human CD4+ T cells stimulated with these molecules in vitro and adoptively transferred to rats in vivo conferred protection against intraabdominal abscesses induced by viable bacterial challenge. These studies demonstrate that bacterial polysaccharides with a distinct charge motif activate T cells and that this activity confers immunity to a distinct pathologic response to bacterial infection

    Diversity of the gut microbiota and eczema in early life

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A modest number of prospective studies of the composition of the intestinal microbiota and eczema in early life have yielded conflicting results.</p> <p>Objective</p> <p>To examine the relationship between the bacterial diversity of the gut and the development of eczema in early life by methods other than stool culture.</p> <p>Methods</p> <p>Fecal samples were collected from 21 infants at 1 and 4 months of life. Nine infants were diagnosed with eczema by the age of 6 months (cases) and 12 infants were not (controls). After conducting denaturating gradient gel electrophoresis (DGGE) of stool samples, we compared the microbial diversity of cases and controls using the number of electrophoretic bands and the Shannon index of diversity (<it>H'</it>) as indicators.</p> <p>Results</p> <p>Control subjects had significantly greater fecal microbial diversity than children with eczema at ages 1 (mean <it>H' </it>for controls = 0.75 vs. 0.53 for cases, P = 0.01) and 4 months (mean <it>H' </it>for controls = 0.92 vs. 0.59 for cases, P = 0.02). The increase in diversity from 1 to 4 months of age was significant in controls (P = 0.04) but not in children who developed eczema by 6 months of age (P = 0.32).</p> <p>Conclusion</p> <p>Our findings suggest that reduced microbial diversity is associated with the development of eczema in early life.</p

    RNA signatures allow rapid identification of pathogens and antibiotic susceptibilities

    Get PDF
    With rising rates of drug-resistant infections, there is a need for diagnostic methods that rapidly can detect the presence of pathogens and reveal their susceptibility to antibiotics. Here we propose an approach to diagnosing the presence and drug-susceptibility of infectious diseases based on direct detection of RNA from clinical samples. We demonstrate that species-specific RNA signatures can be used to identify a broad spectrum of infectious agents, including bacteria, viruses, yeast, and parasites. Moreover, we show that the behavior of a small set of bacterial transcripts after a brief antibiotic pulse can rapidly differentiate drug-susceptible and -resistant organisms and that these measurements can be made directly from clinical materials. Thus, transcriptional signatures could form the basis of a uniform diagnostic platform applicable across a broad range of infectious agents

    Extensive Gene Amplification as a Mechanism for Piperacillin-Tazobactam Resistance in Escherichia coli.

    Get PDF
    Although the TEM-1 β-lactamase (BlaTEM-1) hydrolyzes penicillins and narrow-spectrum cephalosporins, organisms expressing this enzyme are typically susceptible to β-lactam/β-lactamase inhibitor combinations such as piperacillin-tazobactam (TZP). However, our previous work led to the discovery of 28 clinical isolates of Escherichia coli resistant to TZP that contained only blaTEM-1 One of these isolates, E. coli 907355, was investigated further in this study. E. coli 907355 exhibited significantly higher β-lactamase activity and BlaTEM-1 protein levels when grown in the presence of subinhibitory concentrations of TZP. A corresponding TZP-dependent increase in blaTEM-1 copy number was also observed, with as many as 113 copies of the gene detected per cell. These results suggest that TZP treatment promotes an increase in blaTEM-1 gene dosage, allowing BlaTEM-1 to reach high enough levels to overcome inactivation by the available tazobactam in the culture. To better understand the nature of the blaTEM-1 copy number proliferation, whole-genome sequence (WGS) analysis was performed on E. coli 907355 in the absence and presence of TZP. The WGS data revealed that the blaTEM-1 gene is located in a 10-kb genomic resistance module (GRM) that contains multiple resistance genes and mobile genetic elements. The GRM was found to be tandemly repeated at least 5 times within a p1ESCUM/p1ECUMN-like plasmid when bacteria were grown in the presence of TZP.IMPORTANCE Understanding how bacteria acquire resistance to antibiotics is essential for treating infected patients effectively, as well as preventing the spread of resistant organisms. In this study, a clinical isolate of E. coli was identified that dedicated more than 15% of its genome toward tandem amplification of a ~10-kb resistance module, allowing it to escape antibiotic-mediated killing. Our research is significant in that it provides one possible explanation for clinical isolates that exhibit discordant behavior when tested for antibiotic resistance by different phenotypic methods. Our research also shows that GRM amplification is difficult to detect by short-read WGS technologies. Analysis of raw long-read sequence data was required to confirm GRM amplification as a mechanism of antibiotic resistance. MBio 2018 Apr 24; 9(2):e00583-18

    Acute Histologic Chorioamnionitis at Term: Nearly Always Noninfectious

    Get PDF
    Background: The link between histologic acute chorioamnionitis and infection is well established in preterm deliveries, but less well-studied in term pregnancies, where infection is much less common. Methodology/Principal Findings We conducted a secondary analysis among 195 low-risk women with term pregnancies enrolled in a randomized trial. Histologic and microbiologic evaluation of placentas included anaerobic and aerobic cultures (including mycoplasma/ureaplasma species) as well as PCR. Infection was defined as ≥1,000 cfu of a single known pathogen or a ≥2 log difference in counts for a known pathogen versus other organisms in a mixed culture. Placental membranes were scored and categorized as: no chorioamnionitis, Grade 1 (subchorionitis and patchy acute chorioamnionitis), or Grade 2 (severe, confluent chorioamnionitis). Grade 1 or grade 2 histologic chorioamnionitis was present in 34% of placentas (67/195), but infection was present in only 4% (8/195). Histologic chorioamnionitis was strongly associated with intrapartum fever >38°C [69% (25/36) fever, 26% (42/159) afebrile, P<.0001]. Fever occurred in 18% (n = 36) of women. Most febrile women [92% (33/36)] had received epidural for pain relief, though the association with fever was present with and without epidural. The association remained significant in a logistic regression controlling for potential confounders (OR = 5.8, 95% CI = 2.2,15.0). Histologic chorioamnionitis was also associated with elevated serum levels of interleukin-8 (median = 1.3 pg/mL no histologic chorioamnionitis, 1.5 pg/mL Grade 1, 2.1 pg/mL Grade 2, P = 0.05) and interleukin-6 (median levels = 2.2 pg/mL no chorioamnionitis, 5.3 pg/mL Grade 1, 24.5 pg/mL Grade 2, P = 0.02) at admission for delivery as well as higher admission WBC counts (mean = 12,000cells/mm3^3 no chorioamnionitis, 13,400cells/mm3^3 Grade 1, 15,700cells/mm3^3 Grade 2, P = 0.0005). Conclusion/Significance: Our results suggest histologic chorioamnionitis at term most often results from a noninfectious inflammatory process. It was strongly associated with fever, most of which was related to epidural used for pain relief. A more ‘activated’ maternal immune system at admission was also associated with histologic chorioamnionitis
    corecore