6 research outputs found

    MDM2 T309G polymorphism is associated with bladder cancer

    Get PDF
    Recently, a functional T to G polymorphism at nucleotide 309 in the promoter region of the MDM2 gene (rs: 2279744, SNP 309) has been identified. This polymorphism has an impact on the expression of the MDM2 gene, which is a key negative regulator of the tumor suppressor molecule p53. The effect of T309G polymorphism of the MDM2 gene on bladder cancer susceptibility was investigated in a case-control study of 75 bladder cancer patients and 103 controls from Turkey. The G/G genotype exhibited an increased risk of 2.68 (95% CI, 1.34-5.40) for bladder cancer compared with the combination of low-risk genotypes T/T and T/G at this locus. These results show an association between MDM2 T309G polymorphism and bladder cancer in our study group. To the best of our knowledge, this is the first study reporting that MDM2 T309G polymorphism may be a potential genetic susceptibility factor for bladder cancer

    Disruption of HDX gene in premature ovarian failure

    Get PDF
    We present a case of a 19-year-old phenotypically normal girl with premature ovarian failure. Cytogenetic analysis using G banding and fluorescence in situ hybridization (FISH) from cultured peripheral blood lymphocytes of the patient and the family revealed a de novo X;15 translocation and the imbalance to be 46,X,t(X;15)(Xpter → Xq21::15q11 → 15qter;15pter → 15q11::Xq21 → Xqter). ish (CEPX+, wep15+, ISNRPN+, PML+, D15S10+, wcp15-, SNRRN-, PML-)[20]. The X chromosome inactivation (XCI) assay revealed a completely skewed XCI pattern in which selective pressure favors an active maternal allele. The Affymetrix 2.7 M cytogenetics whole-Genome array confirmed the chromosomal imbalance and identified disruption of the HDX gene at Xq21, the translocation breakpoint. © 2013 Informa Healthcare USA, Inc

    Mutation of the Human Circadian Clock Gene CRY1 in Familial Delayed Sleep Phase Disorder

    Get PDF
    Patterns of daily human activity are controlled by an intrinsic circadian clock that promotes ∼24 hr rhythms in many behavioral and physiological processes. This system is altered in delayed sleep phase disorder (DSPD), a common form of insomnia in which sleep episodes are shifted to later times misaligned with the societal norm. Here, we report a hereditary form of DSPD associated with a dominant coding variation in the core circadian clock gene CRY1, which creates a transcriptional inhibitor with enhanced affinity for circadian activator proteins Clock and Bmal1. This gain-of-function CRY1 variant causes reduced expression of key transcriptional targets and lengthens the period of circadian molecular rhythms, providing a mechanistic link to DSPD symptoms. The allele has a frequency of up to 0.6%, and reverse phenotyping of unrelated families corroborates late and/or fragmented sleep patterns in carriers, suggesting that it affects sleep behavior in a sizeable portion of the human population. © 2017 Elsevier Inc

    Two Males with SRY-Positive 46,XX Testicular Disorder of Sex Development

    Get PDF
    The 46,XX testicular disorder of sex development (46,XX testicular DSD) is a rare phenotype associated with disorder of the sex chromosomes. We describe the clinical, molecular, and cytogenetic findings of a 16-and a 30-year-old male patient with sex-determining region Y (SRY)-positive 46,XX testicular DSD. Chromosomal analysis revealed 46,XX karyotype. Fluorescence in situ hybridization (FISH) showed the SRY region translocated to the short arm of the X chromosome. The presence of the SRY gene was also confirmed by polymerase chain reaction (PCR). The X chromosome inactivation (XCI) assay showed that both patients have a random pattern of X chromosome inactivation. This report compares the symptoms and features of the SRY-positive 46,XX testicular DSD patients. © 2013 Informa Healthcare USA, Inc

    Evaluation of X chromosome inactivation with respect to HLA genetic susceptibility in rheumatoid arthritis and systemic sclerosis

    Get PDF
    Background: Autoimmune diseases, including rheumatoid arthritis (RA) and systemic sclerosis (SSc) are characterized by a strong genetic susceptibility from the Human Leucocyte Antigen (HLA) locus. Additionally, disorders of epigenetic processes, in particular non-random X chromosome inactivation (XCI), have been reported in many female-predominant autoimmune diseases. Here we test the hypothesis that women with RA or SSc who are strongly genetically predisposed are less susceptible to XCI bias. Methods: Using methylation sensitive genotyping of the androgen receptor (AR) gene, XCI profiles were performed in peripheral blood mononuclear cells from 161 women with RA, 96 women with SSc and 100 healthy women. HLA-DRB1 and DQB1 were genotyped. Presence of specific autoantibodies was documented for patients. XCI skewing was defined as having a ratio ≥ 80:20 of cells inactivating the same X chromosome. Results: 110 women with RA, 68 women with SSc, and 69 controls were informative for the AR polymorphism. Among them 40.9% of RA patients and 36.8% of SSc patients had skewed XCI compared to 17.4% of healthy women (P = 0.002 and 0.018, respectively). Presence of RA-susceptibility alleles coding for the "shared epitope" correlated with higher skewing among RA patients (P = 0.002) and such correlation was not observed in other women, healthy or with SSc. Presence of SSc-susceptibility alleles did not correlate with XCI patterns among SSc patients. Conclusion: Data demonstrate XCI skewing in both RA and SSc compared to healthy women. Unexpectedly, skewed XCI occurs more often in women with RA carrying the shared epitope, which usually reflects severe disease. This reinforces the view that loss of mosaicism in peripheral blood may be a consequence of chronic autoimmunity. © 2016 Kanaan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Missense mutation in the ATPase, aminophospholipid transporter protein ATP8A2 is associated with cerebellar atrophy and quadrupedal locomotion

    No full text
    PubMedID: 22892528Cerebellar ataxia, mental retardation and dysequilibrium syndrome is a rare and heterogeneous condition. We investigated a consanguineous family from Turkey with four affected individuals exhibiting the condition. Homozygosity mapping revealed that several shared homozygous regions, including chromosome 13q12. Targeted next-generation sequencing of an affected individual followed by segregation analysis, population screening and prediction approaches revealed a novel missense variant, p.I376M, in ATP8A2. The mutation lies in a highly conserved C-terminal transmembrane region of E1 E2 ATPase domain. The ATP8A2 gene is mainly expressed in brain and development, in particular cerebellum. Interestingly, an unrelated individual has been identified, in whom mental retardation and severe hypotonia is associated with a de novo t(10;13) balanced translocation resulting with the disruption of ATP8A2. These findings suggest that ATP8A2 is involved in the development of the cerebro-cerebellar structures required for posture and gait in humans. © 2013 Macmillan Publishers Limited All rights reserved.National Institutes of Health: RC02 NS070477 Yale University National Council for Scientific Research: 108S355, TUBITAK-SBAG 108S036We are grateful to Dr Mary-Claire King for innumerable discussions and suggestions. We also thank the members of Family C for cooperation in this study. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK-SBAG 108S036 and 108S355) and Turkish Academy of Sciences (TUBA research support) to TO; Yale Program on Neurogenetics, the Yale Center for Human Genetics and Genomics and National Institutes of Health grants RC02 NS070477 to MG
    corecore