421 research outputs found

    Dust in Hot Plasma of Nearby Dusty Elliptical Galaxies Observed with the Spitzer Space Telescope

    Get PDF
    We report on mid- and far-IR Spitzer observations of 7 nearby dusty elliptical galaxies by using the Multiband Imaging Photometer (MIPS) and Infrared Spectrograph (IRS). Our sample galaxies are known to contain an excessive amount of interstellar dust against sputtering destruction in hot plasma filling the interstellar space of elliptical galaxies. In order to study the origin and the properties of the excess dust in the hot plasma, we selected galaxies with a wide range of X-ray luminosities but similar optical luminos ities for our Spitzer Guest Observers (GO1) program. The 7 galaxies are detected at the MIPS 24 um, 70 um, and 160 um bands; the far- to mid-IR flux ratios of relatively X-ray-bright elliptical galaxies are lower than those of X-ray-faint galaxies. From the IRS spectra, polycyclic aromatic hydrocarbon (PAH) emission features are detected significantly from 5 of the 7 galaxies; t he emission intensities are weaker as the X-ray luminosity of the galaxy is larger. We have found a correlation between the far- to mid-IR flux ratio and the equivalent width of the PAH emission feature. We have obtained apparent spatial correspondence between mid-IR and X-ray distributions in the outer regions for the three X-ray-brightest galaxies in our sample. Possible interpretations for our observational results are discussed.Comment: 25 pages, 7 figures, accepted for publication in Publications of the Astronomical Society of Japa

    High Precision CTE-Measurement of SiC-100 for Cryogenic Space-Telescopes

    Full text link
    We present the results of high precision measurements of the thermal expansion of the sintered SiC, SiC-100, intended for use in cryogenic space-telescopes, in which minimization of thermal deformation of the mirror is critical and precise information of the thermal expansion is needed for the telescope design. The temperature range of the measurements extends from room temperature down to \sim 10 K. Three samples, #1, #2, and #3 were manufactured from blocks of SiC produced in different lots. The thermal expansion of the samples was measured with a cryogenic dilatometer, consisting of a laser interferometer, a cryostat, and a mechanical cooler. The typical thermal expansion curve is presented using the 8th order polynomial of the temperature. For the three samples, the coefficients of thermal expansion (CTE), \bar{\alpha}_{#1}, \bar{\alpha}_{#2}, and \bar{\alpha}_{#3} were derived for temperatures between 293 K and 10 K. The average and the dispersion (1 σ\sigma rms) of these three CTEs are 0.816 and 0.002 (×106\times 10^{-6}/K), respectively. No significant difference was detected in the CTE of the three samples from the different lots. Neither inhomogeneity nor anisotropy of the CTE was observed. Based on the obtained CTE dispersion, we performed an finite-element-method (FEM) analysis of the thermal deformation of a 3.5 m diameter cryogenic mirror made of six SiC-100 segments. It was shown that the present CTE measurement has a sufficient accuracy well enough for the design of the 3.5 m cryogenic infrared telescope mission, the Space Infrared telescope for Cosmology and Astrophysics (SPICA).Comment: in press, PASP. 21 pages, 4 figure

    Characterization and Improvement of the Image Quality of the Data Taken with the Infrared Camera (IRC) Mid-Infrared Channels onboard AKARI

    Full text link
    Mid-infrared images frequently suffer artifacts and extended point spread functions (PSFs). We investigate the characteristics of the artifacts and the PSFs in images obtained with the Infrared Camera (IRC) onboard AKARI at four mid-infrared bands of the S7 (7{\mu}m), S11 (11{\mu}m), L15 (15{\mu}m), and L24 (24 {\mu}m). Removal of the artifacts significantly improves the reliability of the ref- erence data for flat-fielding at the L15 and L24 bands. A set of models of the IRC PSFs is also constructed from on-orbit data. These PSFs have extended components that come from diffraction and scattering within the detector arrays. We estimate the aperture correction factors for point sources and the surface brightness correction factors for diffuse sources. We conclude that the surface brightness correction factors range from 0.95 to 0.8, taking account of the extended component of the PSFs. To correct for the extended PSF effects for the study of faint structures, we also develop an image reconstruction method, which consists of the deconvolution with the PSF and the convolution with an appropriate Gaussian. The appropriate removal of the artifacts, improved flat-fielding, and image reconstruction with the extended PSFs enable us to investigate de- tailed structures of extended sources in IRC mid-infrared images.Comment: 35 pages, 15 figures, accepted for publication in PAS

    AKARI near-infrared spectroscopy of the aromatic and aliphatic hydrocarbon emission features in the galactic superwind of M 82

    Full text link
    Aims. We investigate the properties of hydrocarbon grains in the galactic superwind of M 82. Methods. With AKARI, we performed near-infrared (2.5 - 4.5 um) spectroscopic observations of 34 regions in M 82 including its northern and southern halos. Results. Many of the spectra show strong emission at 3.3 um due to polycyclic aromatic hydrocarbons (PAHs) and relatively weak features at 3.4 - 3.6 um due to aliphatic hydrocarbons. In particular, we clearly detect the PAH 3.3 um emission and the 3.4 - 3.6 um features in halo regions, which are located at a distance of 2 kpc away from the galactic center. We find that the ratios of the 3.4 - 3.6 um features to the 3.3 um feature intensity significantly increase with distance from the galactic center, while the ratios of the 3.3 um feature to the AKARI 7 um band intensity do not. Conclusions. Our results clearly confirm the presence of small PAHs even in a harsh environment of the halo of M 82. The results also reveal that the aliphatic hydrocarbons emitting the 3.4 - 3.6 um features are unusually abundant in the halo, suggesting that small carbonaceous grains are produced by shattering of larger grains in the galactic superwind.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&

    High-spectral resolution observations of the 3.29 micron emission feature: Comparison to QCC and PAHs

    Get PDF
    Two of the most promising explanations for the origin of the interstellar emission features observed at 3.29, 3.4, 6.2, 7.7, 8.6, and 11.3 microns are: quenched carbonaceous composite (QCC) and polycyclic aromatic hydrocarbons (PAHs). High resolution spectra are given of the 3.29 micron emission feature which were taken with the Cooled Grating Array Spectrometer at the NASA Infrared Telescope Facility and previously published. These spectra show that the peak wavelength of the 3.29 micron feature is located at 3.295 + or - 0.005 micron and that it is coincident with the peak absorbance of QCC. The peak wavelength of the 3.29 micron feature appears to be the same in all of the sources observed thus far. However, the width of the feature in HD 44179 and Elias 1 is only 0.023 micron, which is smaller than the 0.043 micron width in NGC 7027, IRAS 21282+5050, the Orion nebula, and BD+30 deg 3639. Spectra of NGC 7027, QCC, and PAHs is shown. QCC matches the 3.29 micron interstellar emission feature very closely in the wavelength of the peak, and it produces a single feature. On the other hand, PAHs rarely match the peak of the interstellar emission feature, and characteristically produce multiple features

    Large-scale distributions of mid- and far-infrared emission from the center to the halo of M82 revealed with AKARI

    Get PDF
    The edge-on starburst galaxy M82 exhibits complicated distributions of gaseous materials in its halo, which include ionized superwinds driven by nuclear starbursts, neutral materials entrained by the superwinds, and large-scale neutral streamers probably caused by a past tidal interaction with M81. We investigate detailed distributions of dust grains and polycyclic aromatic hydrocarbons (PAHs) around M82 to understand their interplay with the gaseous components. We performed mid- (MIR) and far-infrared (FIR) observations of M82 with the Infrared Camera and Far-Infrared Surveyor on board AKARI. We obtain new MIR and FIR images of M82, which reveal both faint extended emission in the halo and very bright emission in the center with signal dynamic ranges as large as five and three orders of magnitude for the MIR and FIR, respectively. We detect MIR and FIR emission in the regions far away from the disk of the galaxy, reflecting the presence of dust and PAHs in the halo of M82. We find that the dust and PAHs are contained in both ionized and neutral gas components, implying that they have been expelled into the halo of M82 by both starbursts and galaxy interaction. In particular, we obtain a tight correlation between the PAH and Hα\alpha emission, which provides evidence that the PAHs are well mixed in the ionized superwind gas and outflowing from the disk.Comment: 12 pages, 8 figures, accepted for publication in A&

    AKARI Near- to Mid-Infrared Imaging and Spectroscopic Observations of the Small Magellanic Cloud. I. Bright Point Source List

    Full text link
    We carried out a near- to mid-infrared imaging and spectroscopic observations of the patchy areas in the Small Magellanic Cloud using the Infrared Camera on board AKARI. Two 100 arcmin2 areas were imaged in 3.2, 4.1, 7, 11, 15, and 24 um and also spectroscopically observed in the wavelength range continuously from 2.5 to 13.4 um. The spectral resolving power (lambda/Delta lambda) is about 20, 50, and 50 at 3.5, 6.6 and 10.6 um, respectively. Other than the two 100 arcmin2 areas, some patchy areas were imaged and/or spectroscopically observed as well. In this paper, we overview the observations and present a list of near- to mid-infrared photometric results, which lists ~ 12,000 near-infrared and ~ 1,800 mid-infrared bright point sources detected in the observed areas. The 10 sigma limits are 16.50, 16.12, 13.28, 11.26, 9.62, and 8.76 in Vega magnitudes at 3.2, 4.1, 7, 11, 15, and 24 um bands, respectively.Comment: 16 pages, 7 figures, accepted for publication in PASJ. Full resolution version is available at http://www-irc.mtk.nao.ac.jp/%7Eyita/smc20100112.pd

    AKARI Detections of Hot Dust in Luminous Infrared Galaxies

    Full text link
    We present a new sample of active galactic nuclei (AGNs) identified using the catalog of the AKARI Mid-infrared(MIR) All-Sky Survey. Our MIR search has an advantage in detecting AGNs that are obscured at optical wavelengths due to extinction. We first selected AKARI 9micron excess sources with F(9micron)/F(K_S)>2 where K_S magnitudes were taken from the Two Micron All Sky Survey. We then obtained follow-up near-infrared spectroscopy with the AKARI/IRC, to confirm that the excess is caused by hot dust. We also obtained optical spectroscopy with the Kast Double Spectrograph on the Shane 3-m telescope at Lick Observatory. On the basis of on these observations, we detected hot dust with a characteristic temperature of ~500K in two luminous infrared galaxies. The hot dust is suspected to be associated with AGNs that exhibit their nonstellar activity not in the optical, but in the near- and mid-infrared bands, i.e., they harbor buried AGNs. The host galaxy stellar masses of 4-6 x 10^9 M_sun are small compared with the hosts in optically-selected AGN populations. These objects were missed by previous surveys, demonstrating the power of the AKARI MIR All-Sky Survey to widen AGN searches to include more heavily obscured objects. The existence of multiple dusty star clusters with massive stars cannot be completely ruled out with our current data.Comment: 15 pages, 4 figures, to be published in Astronomy & Astrophysic
    corecore