60 research outputs found

    Silver and Gold Nanoparticles for Antimicrobial Purposes against Multi-Drug Resistance Bacteria

    Get PDF
    Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles’ physicochemical properties and potential antimicrobial activity. The possible antimicrobial mechanism of these types of nanoparticles will be discussed in-depth as well

    Study of Temperature and Pressure Effect on Thermodynamic Properties of Thorium Phosphide Compound

    Get PDF
    In this paper, we use density functional theory and first-principles calculations to evaluate the structural, dynamic, and thermophysical properties of thorium phosphide. The structural properties including lattice constant (a0), bulk modulus (B0), and first-order derivative of bulk modulus (B0') are calculated by fitting the Brich-Murnaghan third-order equation of state and compared with other experimental data. This comparison shows a satisfactory agreement between the calculated and experimental lattice constants. The phonon dispersion diagram is calculated by the linear response approach along the high symmetry points. The results indicate the absence of negative modes in the phonon spectrum, which shows that the structure is dynamically stable. We observe a good agreement with the comparison of the obtained optical frequency with the experimental data from the inelastic neutron measurement. The analysis of the phonon density of the states diagram shows a phonon gap in the distance from 115 to 262 cm-1 for this material. Thermodynamic properties including Debye temperature, vibrational entropy, isothermal bulk modulus, isochoric heat capacity, thermal expansion, and GrĂĽneisen parameter are evaluated by the quasi-harmonic Debye method at high pressures and temperatures. It is observed that the Debye temperature of thorium phosphide decreases with increasing temperature at a constant pressure and increases with increasing pressure at a constant temperature. The reduction of the GrĂĽneisen parameter due to the application of pressure shows the changes in the phonon frequencies with the changes in the volume of the unit cell. Also, the increase of the Groningen parameter due to the increase in temperature can be the result of changing the dynamics of the network

    Mineral Trioxide Aggregate Mixed with Normal Saline, Calcium Chloride or KY Jelly as Apical Plug in Simulated Open Apices: An In vitro Microleakage Study

    Get PDF
    Introduction: Mineral trioxide aggregate (MTA) mixed with normal saline has short working time, delayed setting time, and poor consistency when used as an apical plug. A preliminary study suggested that substituting normal saline with KY Jelly or 5% calcium chloride (CaCl2) as a vehicle expedites the setting time of MTA. The present in vitro study compared the microleakage of ProRoot MTA mixed with normal saline (MS) to that of ProRoot MTA mixed with KY Jelly and/or 5% CaCl2 in simulated canals with open apices. Materials and methods: Thirty six single-rooted extracted human teeth were cleaned and shaped with ProTaper rotary system to make 36 standardized artificially created open apices. Teeth were randomly divided into three experimental groups (n=10) and two control groups (n=3). In group 1, MTA was mixed with normal saline (MS) and placed into the canals to form 4 to 5 mm apical plugs. In group 2, MTA was mixed with 5% CaCl2 (MC) and in group 3, MTA was mixed with KY Jelly (MK). The other two groups served as positive and negative controls. The remaining canal spaces in the experimental groups were backfilled with thermoplasticized gutta-percha without sealer. Dye penetration and clearing was used to evaluate the sealing ability of each group. The samples were then examined under stereomicroscope to measure the microleakage of different MTA mixtures in mm. Data were statistically analyzed using One-Sample Kolmogorov-Smirnov test for determination of normal distribution and then by one-way ANOVA and Tukey’s tests to detect any significance. Results: Positive and negative controls responded as expected. The MS group showed the least mean dye penetration value. There was a significant difference between MS with other groups (P<0.05) but no difference was found between MC and MK groups. Conclusion: Within the limitations of this in vitro study, we can conclude that among these three vehicles, normal saline mixed with ProRoot MTA has the least amount of microleakage in canals with open apices

    A Novel Supplier-Managed Inventory Order Assignment Platform Enabled by Blockchain Technology

    Get PDF
    Supplier Managed Inventory (SMI) can be considered an enabler for supply chain coordination in which the supplier takes over the customer's inventory to optimize the supply chain. However, the successful implementation of SMI is centered on the high level of trust, accurate data transfer, and efficient interaction between parties. This requires the sharing of information through supply chain stakeholders which face resistance and challenges due to the fear that this information will be revealed to its competitors and transparency of data. This paper has investigated the application of Blockchain technology and its potential for successful SMI implementation. The paper has proposed a Blockchain framework for the coordination of suppliers and customers. The framework includes a mathematical model for multiple supplier-customer order fulfillment which is embedded in the blockchain framework. The paper has demonstrated case studies to evaluate the performance of the proposed model with literature discussing the details of its blockchain framework

    A Comparative Analysis of Clinical Characteristics and Laboratory Findings of COVID-19 between Intensive Care Unit and Non-Intensive Care Unit Pediatric Patients: A Multicenter, Retrospective, Observational Study from Iranian Network for Research in Viral

    Get PDF
    Introduction: To date, little is known about the clinical features of pediatric COVID-19 patients admitted to intensive care units (ICUs). Objective: Herein, we aimed to describe the differences in demographic characteristics, laboratory findings, clinical presentations, and outcomes of Iranian pediatric COVID-19 patients admitted to ICU versus those in non-ICU settings. Methods: This multicenter investigation involved 15 general and pediatrics hospitals and included cases with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection based on positive real-time reverse transcription polymerase chain reaction (RT-PCR) admitted to these centers between March and May 2020, during the initial peak of the COVID-19 pandemic in Iran. Results: Overall, 166 patients were included, 61 (36.7%) of whom required ICU admission. The highest number of admitted cases to ICU were in the age group of 1–5 years old. Malignancy and heart diseases were the most frequent underlying conditions. Dyspnea was the major symptom for ICU-admitted patients. There were significant decreases in PH, HCO3 and base excess, as well as increases in creatinine, creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and potassium levels between ICU-admitted and non-ICU patients. Acute respiratory distress syndrome (ARDS), shock, and acute cardiac injury were the most common features among ICU-admitted patients. The mortality rate in the ICU-admitted patients was substantially higher than non-ICU cases (45.9% vs. 1.9%, respectively; p<0.001). Conclusions: Underlying diseases were the major risk factors for the increased ICU admissions and mortality rates in pediatric COVID-19 patients. There were few paraclinical parameters that could differentiate between pediatrics in terms of prognosis and serious outcomes of COVID-19. Healthcare providers should consider children as a high-risk group, especially those with underlying medical conditions

    Sol-gel synthesis of thermoluminescent Cd-doped ZnTe nanoparticles

    No full text
    The Cd (3 wt%)-doped ZnTe nanoparticles with average size of 5 nm and band gap energy of 3.15 eV were synthesized by sol-gel method. The optical properties (such as band gap energy) and the size distribution of the nanoparticles have been investigated by using UV-Vis spectroscopy and transmission electron microscopy, respectively. Then, thermoluminescence property of the nanoparticles exposed to various doses of gamma radiation of Cs137 has been studied. The thermoluminescence glow peak of the nanoparticles showed a displacement from 290 to 230°C by increasing the dose of gamma radiation from 7.5 to 67.5 mSv. The thermoluminescence intensity of the synthesized Cd-doped ZnTe nanoparticles also showed a linear dose response

    Nanomaterials for Photocatalytic Degradations of Analgesic, Mucolytic and Anti-Biotic/Viral/Inflammatory Drugs Widely Used in Controlling SARS-CoV-2

    No full text
    The COVID-19 pandemic has been transformed into one of the main worldwide challenges, in recent years. For controlling symptoms that are caused by this disease (e.g., chills or fever, shortness of breath and/or difficulty in breathing, cough, sore throat, fatigue, headache, muscle aches, the new loss of tastes and/or smells, congestion or runny nose, nausea, vomiting and/or diarrhea), lots of medicines including analgesics, mucolytics, and anti-biotic/viral/inflammatory drugs have been frequently prescribed. As these medicines finally contaminate terrestrial and aquatic habitats by entering surface waterways through pharmaceutical production and excreting trace amounts of waste after human usage, they have negative impacts on wildlife’s health and ecosystem. Residual drugs in water have the potential to harm aquatic creatures and disrupt their food chain as well as the breeding cycle. Therefore, proper degradation of these broadly used medicines is highly crucial. In this work, the use of nanomaterials applicable in photocatalytic degradations of analgesics (e.g., acetaminophen, aspirin, ibuprofen, and naproxen), mucolytics (e.g., ambroxol), antibiotics (e.g., azithromycin and quinolones including hydroxychloroquine and chloroquine phosphate), anti-inflammatory glucocorticoids (e.g., dexamethasone and cortisone acetate), antihistamines (e.g., diphenhydramine), H2 blockers (e.g., famotidine), anthelmintics (e.g., praziquantel), and finally antivirals (e.g., ivermectin, acyclovir, lopinavir/ritonavir, favipiravir, nitazoxanide, and remdesivir) which widely used in controlling/treating the coronavirus have been reviewed and discussed

    Nanomaterials for Photocatalytic Degradations of Analgesic, Mucolytic and Anti-Biotic/Viral/Inflammatory Drugs Widely Used in Controlling SARS-CoV-2

    No full text
    The COVID-19 pandemic has been transformed into one of the main worldwide challenges, in recent years. For controlling symptoms that are caused by this disease (e.g., chills or fever, shortness of breath and/or difficulty in breathing, cough, sore throat, fatigue, headache, muscle aches, the new loss of tastes and/or smells, congestion or runny nose, nausea, vomiting and/or diarrhea), lots of medicines including analgesics, mucolytics, and anti-biotic/viral/inflammatory drugs have been frequently prescribed. As these medicines finally contaminate terrestrial and aquatic habitats by entering surface waterways through pharmaceutical production and excreting trace amounts of waste after human usage, they have negative impacts on wildlife’s health and ecosystem. Residual drugs in water have the potential to harm aquatic creatures and disrupt their food chain as well as the breeding cycle. Therefore, proper degradation of these broadly used medicines is highly crucial. In this work, the use of nanomaterials applicable in photocatalytic degradations of analgesics (e.g., acetaminophen, aspirin, ibuprofen, and naproxen), mucolytics (e.g., ambroxol), antibiotics (e.g., azithromycin and quinolones including hydroxychloroquine and chloroquine phosphate), anti-inflammatory glucocorticoids (e.g., dexamethasone and cortisone acetate), antihistamines (e.g., diphenhydramine), H2 blockers (e.g., famotidine), anthelmintics (e.g., praziquantel), and finally antivirals (e.g., ivermectin, acyclovir, lopinavir/ritonavir, favipiravir, nitazoxanide, and remdesivir) which widely used in controlling/treating the coronavirus have been reviewed and discussed
    • …
    corecore