64 research outputs found

    Fixed-point smoothing in Hilbert spaces

    Get PDF
    The fixed-point smoothing estimator and smoothing error covariance operator equations are derived for infinite-dimensional linear systems using both the Wiener-Hoph theory in Hilbert spaces developed by Falb and the abstract evolution theory. Since it is clear that the prediction problems can be solved by the same approach, the present results in conjunction with the work of Falb on filtering give a complete treatment of the infinite-dimensional linear estimation problem from the viewpoint of Wiener-Hoph theory. Finally, based on the optimal smoothing estimator in Hilbert space, the fixed-point smoothing estimator is derived for a linear distributed parameter system of parabolic type

    Mobile agent routing for query retrieval using genetic algorithm

    Get PDF
    Mobile agents often have a task to collect data from several predefined sites.This should be done in an efficient way by minimizing the elapsed time.Usually these agents only know the list of sites but not the distances between them.This paper proposes a method to minimize a network routing time taken by the mobile agents to collect information from different sites using genetic algorithm (GA).The mobile agents repeat travelling over short routes and avoid longer ones.Mobile agents for query retrieval have used the GA to select the best routes that minimize the query retrieval time.The result shows that the proposed method provides good time minimization in retrieving the query results by the mobile agents based on different GA parameters

    Inferring gene regulatory networks from gene expression data by a dynamic Bayesian network-based model

    Get PDF
    Enabled by recent advances in bioinformatics, the inference of gene regulatory networks (GRNs) from gene expression data has garnered much interest from researchers. This is due to the need of researchers to understand the dynamic behavior and uncover the vast information lay hidden within the networks. In this regard, dynamic Bayesian network (DBN) is extensively used to infer GRNs due to its ability to handle time-series microarray data and modeling feedback loops. However, the efficiency of DBN in inferring GRNs is often hampered by missing values in expression data, and excessive computation time due to the large search space whereby DBN treats all genes as potential regulators for a target gene. In this paper, we proposed a DBN-based model with missing values imputation to improve inference efficiency, and potential regulators detection which aims to lessen computation time by limiting potential regulators based on expression changes. The performance of the proposed model is assessed by using time-series expression data of yeast cell cycle. The experimental results showed reduced computation time and improved efficiency in detecting gene-gene relationships

    Inferring gene regulatory networks from gene expression data by a dynamic Bayesian network-based model

    Get PDF
    Enabled by recent advances in bioinformatics, the inference of gene regulatory networks (GRNs) from gene expression data has garnered much interest from researchers. This is due to the need of researchers to understand the dynamic behavior and uncover the vast information lay hidden within the networks. In this regard, dynamic Bayesian network (DBN) is extensively used to infer GRNs due to its ability to handle time-series microarray data and modeling feedback loops. However, the efficiency of DBN in inferring GRNs is often hampered by missing values in expression data, and excessive computation time due to the large search space whereby DBN treats all genes as potential regulators for a target gene. In this paper, we proposed a DBN-based model with missing values imputation to improve inference efficiency, and potential regulators detection which aims to lessen computation time by limiting potential regulators based on expression changes. The performance of the proposed model is assessed by using time-series expression data of yeast cell cycle. The experimental results showed reduced computation time and improved efficiency in detecting gene-gene relationships

    Deepint.net: A rapid deployment platform for smart territories

    Get PDF
    This paper presents an efficient cyberphysical platform for the smart management of smart territories. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart cities is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study where the bike renting service of Paris—Vélib’ Métropole has been managed. This platform could enable smart territories to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques.This work has been partially supported by the European Regional Development Fund (ERDF) through the Interreg Spain-Portugal V-A Program (POCTEP) under grant 0677_DISRUPTIVE_2_E, the project My-TRAC: My TRAvel Companion (H2020-S2RJU-2017), the project LAPASSION, CITIES (CYTED 518RT0558) and the company DCSC. Pablo Chamoso’s research work has been funded through the Santander Iberoamerican Research Grants, call 2020/2021, under the direction of Paulo Novais

    Speed Control of Averaged DC Motor Drive System by Using Neuro-PID Controller

    No full text

    Neural network classification of symmetrical and nonsymmetrical images using new moments with high noise tolerance

    No full text
    The classification of images using regular or geometric moment functions suffers from two major problems. First, odd orders of central moments give zero value for images with symmetry in the x and/or y directions and symmetry at centroid. Secondly, these moments are very sensitive to noise especially for higher order moments. In this paper, a single solution is proposed to solve both these problems. The solution involves the computation of the moments from a reference point other than the image centroid. The new reference centre is selected such that the invariant properties like translation, scaling and rotation are still maintained. In this paper, it is shown that the new proposed moments can solve the symmetrical problem. Next, we show that the new proposed moments are less sensitive to Gaussian and random noise as compared to two different types of regular moments derived by Hu. Extensive experimental study using a neural network classification scheme with these moments as inputs are conducted to verify the proposed method

    Fuzzy ARTMAP classification of invariant features derived using angle of rotation from a neural network

    No full text
    Conventional regular moment functions have been proposed as pattern sensitive features in image classification and recognition applications. But conventional regular moments are only invariant to translation, rotation and equal scaling. It is shown that the conventional regular moment invariants remain no longer invariant when the image is scaled unequally in the x- and y-axis directions. We address this problem by presenting a technique to make the regular moment functions invariant to unequal scaling. However, the technique produces a set of features that are only invariant to translation, unequal/equal scaling and reflection. They are not invariant to rotation. To make them invariant to rotation, moments are calculated with respect to the principal axis of the image. To perform this, the exact angle of rotation must be known. But the method of using the second-order moments to determine this angle will also be inclusive of an undesired tilt angle. Therefore, in order to correctly determine the amount of rotation, the tilt angle which differs for different scaling factors in the x- and y-axis directions for the particular image must be obtained. In order to solve this problem, a neural network using the back-propagation learning algorithm is trained to estimate the tilt angle of the image and from this the amount of rotation for the image can be determined. Next, the new moments are derived and a Fuzzy ARTMAP network is used to classify these images into their respective classes. Sets of experiments involving images rotated and scaled unequally in the x- and y-axis directions are carried out to demonstrate the validity of the proposed technique

    VEP optimal channel selection using genetic algorithm for neural network classification of alcoholics

    No full text
    In this letter, neural networks (NNs) classify alcoholics and nonalcoholics using features extracted from visual evoked potential (VEP). A genetic algorithm (GA) is used to select the minimum number of channels that maximize classification performance. GA population fitness is evaluated using fuzzy ARTMAP (FA) NN, instead of the widely used multilayer perceptron (MLP). MLP, despite its effective classification, requires long training time (on the order of 103 times compared to FA). This causes it to be unsuitable to be used with GA, especially for on-line training. It is shown empirically that the optimal channel configuration selected by the proposed method is unbiased, i.e., it is optimal not only for FA but also for MLP classification. Therefore, it is proposed that for future experiments, these optimal channels could be considered for applications that involve classification of alcoholics
    • …
    corecore