166 research outputs found

    By-Product Alcohol: Fusel Oil as an Alternative Fuel in Spark Ignition Engine

    Get PDF
    Fusel oil is a by-product obtained through the fermentation of some agricultural products. The fusel oil properties are closer to other alternative combustible types and the limited number of studies on the use of fusel oil as an alcohol derivative in SI engines constitutes to the base of this study. This paper experimentally examined the impacts of a by-product of alcohol, which is fusel oil by blending it with gasoline, on engine performance, combustion characteristics, and emissions in a 4-cylinder SI engine. The test was achieved at different engine speeds and a 60 % throttle valve (load). As results, brake power, BTE, and BSFC of F10 are higher at all engine speeds. Maximum engine BTE was 33.9%, at the lowest BSFC with F10. Moreover, it is worth seeing that the F10 under rich air-fuel ratio has less variation of COVIMEP compared to the F20 and gasoline. F10 represents shorter combustion duration, thereby, the engine power increased. NOx emission for F10 at 4500 rpm was lower than gasoline. The highest value of HC emission is obtained with F10 compared to gasoline and F20 with an average increase of 11% over the engine speed range. CO and CO2 emissions increased when using fusel oil blends

    Performance, Combustion Characteristics and Emission Tests of Single Cylinder Engine Running on Fusel Oil - Diesel Blended (F20) Fuel

    Get PDF
    Alcohols produced from a renewable source are amongst the important alternative fuels for internal combustion engines. Investigations on alternative fuels for compression ignition engines regarded as one of the major research areas. This paper details an experimental examination of the performance and emissions in single cylinder compression ignition engines operating with fusel oil F20 and pure diesel F0 at five engine speeds and 50% engine load. The test results indicated that the engine power and torque slightly decrease with the F20 at low speeds compared with pure diesel. Further, the in-cylinder pressure was decreased at all engine speed for F20 in comparison with pure diesel. The volumetric efficiency and fuel consumption were increased for F20 due the low heating value of fusel oil. The results showed that CO2 and CO emissions were increased because of the water content, low heating value and low cetane number for fusel oil. The maximum reduction in NOx emissions was 18% for F20 at 1500 rpm

    Performance and Combustion Characteristics of an SI Engine Fueled With Fusel Oil-Gasoline at Different Water Content

    Get PDF
    The main objective of the current study is to investigate the impacts of fusel oil-gasoline blends with different water content on performance and combustion characteristics of an SI engine. The water content of fusel oil is reduced by employing rotary extractor method. The parameters examined in the current study are the effects of test fuels upon engine performance criteria, fuel combustion, location of CA50 and coefficient of variation of indicated mean effective pressure (COVIMEP). The experiments are conducted in a SI engine with two blending ratio of gasoline-fusel oil (FBWE10 and FAWE10) in addition to pure gasoline as a standard fuel under different engine speeds and constant 45% of WOT engine load. The study results reveal that engine power, torque, and brake thermal efficiency have slightly improved with fusel oil-gasoline blends that were obvious clearly after reduction of water content. On the other hand, though the brake specific fuel consumption of FAWE10 slightly improve compared to FBWE10 but still higher than gasoline. Furthermore, the peak in-cylinder pressure, rate of heat release, and rate of pressure rise enhanced with fusel oil-gasoline blends. The (CA 0–10) and (CA 10–90) duration could be simultaneously decreased by reducing the water content of fusel oil, all of that are helpful to improve the stability of combustion and thought to be reasons for the reduction in COVIMEP. As a conclusion, the reduction of fusel oil water content has played positively to enhance the combustion and performance characteristics of the fuel blend and result in more stable engine operation

    Set-up of the experiment and improve the performance and emissions of diesel fuel with fusel oil additive from waste products

    Get PDF
    Response surface methodology (RSM) has been widely implemented to improve the pollutant emission characteristics and performance of a compression ignition engine. The fusel oil-biodiesel blend and pure diesel under varied engine loads and speeds with the use of Models of RSM were found to be statistically significant. This research study has aimed to statistically investigate how a fusel oil-diesel blend impacts compression ignition engine performance and the exhaust pollutants by comparing it to pure diesel fuel. The optimum parameter for reducing ISFC, NOx and CO2 emissions while boosting power was chosen. The blended fuel (F20) showed insignificant effects on the indicated power thereby 20% of fusel oil with diesel may be an acceptable ratio using CI engines in terms of power as well as the lowest NOx emissions with F20. Meanwhile, the highest values of ISFC and CO2 emissions were with F20. When comparing diesel to F20, the optimal load was 29.4 % and the engine speed was 2399 rpm. The predicted values for power, ISFC, NOx and CO2 emissions were4.06 kW, 220.07 g/kWh, 55.56 ppm and 1.93% respectively

    Nonthermal plasma-assisted catalysis NH3 decomposition for COx-free H2 production : A review

    Get PDF
    Hydrogen (H2) is recognized as a viable and environmentally friendly energy source, utilized across various domains, from large-scale chemical energy exports to small-scale power generation in remote areas. However, the storage and distribution costs of H2 present significant challenges. Ammonia (NH3) emerges as a carbon-free hydrogen carrier, backed by a robust international transport and storage infrastructure. On-site hydrogen production can be efficiently achieved through NH3 decomposition, predominantly via thermal catalysis. One innovative approach involves plasma technology, which utilizes NH3, alcohols, or hydrocarbons to produce pure hydrogen in plasma reactors. Nonthermal plasma (NTP) in particular, for NH3 decomposition and H2 production, has garnered considerable interest owing to its higher energy efficiency than thermal plasma systems. Furthermore, integrating NTP with catalysis, termed plasma-assisted catalysis, creates a synergistic effect, enhancing NH3 decomposition efficiency for H2 production through improved plasma-catalyst interactions. Consequently, NTP-catalysis holds the potential to revolutionize NH3 conversion and utilisation in the future. To date, there have been limited studies on NTP-assisted catalytic NH3 decomposition. This review article compiles the latest NTP-assisted catalytic NH3 decomposition methodologies for H2 production. It delves into the basics of plasma-assisted NH3 decomposition, including adsorption, desorption, and the synergistic processes during plasma catalysis. Additionally, it examines the impact of NTP on the chemical states and properties of various catalysts and provides a comprehensive analysis of the factors influencing NH3-plasma decomposition

    A comprehensive review on the exergy analysis of combined cycle power plants

    Get PDF
    The arriving optimum improvement of a thermodynamic system of energy conversion such as a combined cycle power plant (CCPP) is complicated due to the existence of different factors. Energy and exergy analysis is utilized as effective methods to determine both the quantity and quality of the energy sources. This paper reviews the latest thermodynamics analysis on each system components of a CCPP independently and determine the exergy destruction of the plant. A few layouts of the CCPP plant from different locations considered as case studies. In fact, the most energy losses occurred in the condenser compared with the plant components. It found that in the combustion chamber (CC) the highest exergy destruction occurred. The ambient temperature causes an evident decrement in the power production by the gas turbine (GT). The result has proved that besides energy, exergy analysis is an efficient way to the assessment of the performance of the CCPP by recommending a more advantageous configuration of the CCPP plant, which would lead to reductions in fuel required and emissions of air pollutants

    Sustainable green energy management : Optimizing scheduling of multi-energy systems considered energy cost and emission using attractive repulsive shuffled frog-leaping

    Get PDF
    As energy systems become increasingly complex, there is a growing need for sustainable and efficient energy management strategies that reduce greenhouse gas emissions. In this paper, multi-energy systems (MES) have emerged as a promising solution that integrates various energy sources and enables energy sharing between different sectors. The proposed model is based on using an Attractive Repulsive Shuffled Frog-Leaping (ARSFL) algorithm that optimizes the scheduling of energy resources, taking into account constraints such as capacity limitations and environmental regulations. The model considers different energy sources, including renewable energy and a power-to-gas (P2G) network with power grid, and incorporates a demand–response mechanism that allows consumers to adjust their energy consumption patterns in response to price signals and other incentives. The ARSFL algorithm demonstrates superior performance in managing and minimizing energy purchase uncertainty compared to the particle swarm optimization (PSO) and genetic algorithm (GA). It also exhibits significantly reduced execution time, saving approximately 1.59% compared to PSO and 2.7% compared to GA

    Optimisation of POME biodiesel with isobutanol additive to cater UN sustainable development goal on affordable and clean energy

    Get PDF
    Biodiesel is a suitable alternative to solve global pollution and declining non-renewable resources. This aligns with the sustainable climate goals and policies to cater to SDG 7. Sustainable technology and solutions have to be fostered. The higher blends of biodiesel will result in engine performance and emissions degradation. Therefore, this research aims to improve the engine performance and emissions of diesel engines operating with B20 POME biodiesel and isobutanol. The Central Composite Design (CCD) model was used to construct the RSM model to determine the optimised condition of the engine testing. Engine performance and emissions of diesel engines were tested on the Yanmar TF120M at 50 % load. Six fuel samples, diesel, B20 Palm Oil Methyl Ester (POME) biodiesel blended fuel, and another four B20 POME biodiesel blends added with 5–20 % in volume percentage of isobutanol, were tested. The optimised RSM obtained a desirability of 0.7. The optimal conditions for the engine testing were at 1868 rpm and a 10 % isobutanol additive percentage. The brake power, BSFC, and BTE of the B95IBU5 and B90IBU10 show an improvement compared to the B20. The exhaust emission shows the lowest CO emission for B90IBU10 at 50 % load. The lowest NOx emission was obtained by B95IBU5 and B90IBU10, with an improvement of 1.8 % and 2.4 %, respectively. Therefore, from this study, it can be concluded that a lower percentage of isobutanol additive of 5–10 % is a promising additive for biodiesel blended fuels

    Potential and limitation of internet of things (IOT) application in the automotive industry: An overview

    Get PDF
    With yearly output exceeding 70 million units, the automotive industry is one of the world's largest manufacturing industries. According to worldwide estimates, the car industry's global revenue was an astounding 3 trillion dollars equating to a combined global GDP of 3.65 percent. The emergence of IoT in the automobile sector has created new opportunities for automakers and purchasers worldwide. With industrial and commercial applications, IoT in the automobile industry has developed into a significant hotspot for a variety of multipurpose applications. From linked automobiles to automated transportation systems, Internet of Things applications have had a significant impact on the worldwide automotive business. The Internet of Things, along with other disruptive technologies, is reshaping the automobile sector as a whole. The evolution of this sector has resulted in the birth of ground-breaking advancements in automobiles, namely linked and autonomous vehicles. Different types of internet of things technology have significant qualities that make them viable candidates as a technology for use in automotive industry. This paper focuses on internet of things latest findings done by previous researcher and describes the operation of the technology. Moreover, this paper also provides insights into some countermeasures against internet of things

    Identifying SARS-CoV2 transmission cluster category: An analysis of country government database

    Get PDF
    Background: As a result of the high contagiousness and transmissibility of SARS-CoV-2, studying the location of the case clusters that will follow, will help understand the risk factors related to the disease transmission. In this study, we aim to identify the transmission cluster category and settings that can guide decision-makers which areas to be opened again.Methods: A thorough review of the literature and the media articles were performed. After data verification, we included cluster data from eight countries as of 16th May 2020. Clusters were further categorized into 10 categories and analysis was performed. The data was organized and presented in an easily accessible online sheet.Results: Among the eight included countries, we have found 3905 clusters and a total number of 1,907,944 patients. Indoor settings (mass accommodation and residential facilities) comprised the highest number of both number of clusters (3315/3905) and infected patients (1,837,019/1,907,944), while the outdoor ones comprised 590 clusters and 70,925 patients. Mass accommodation was associated with the highest number of cases in 5 of the 7 countries with data available. Social events and residential settings were responsible for the highest number of cases in the two remaining countries. In the USA, workplace facilities have reported 165 clusters of infection including 122 food production facilities.Conclusions: Lockdown could truly be a huge burden on a country’s economy. However, with the proper knowledge concerning the transmissibility and the behaviour of the disease, better decisions could be made to guide the appropriate removal of lockdown across the different fields and regions
    • …
    corecore