2 research outputs found

    Performance analysis of hybrid 5G cellular networks exploiting mmWave capabilities in suburban areas

    Get PDF
    Millimeter wave (mmWave) technology is considered as a key enabler for fifth generation (5G) networks to achieve higher data rates with low transmission power by offloading the users with low signal-to-noise-ratios. Millimeter wave networks operating at E and W frequency bands have available bandwidth of 1 GHz or more to provide higher data rates whereas their propagation characteristics differ greatly from the conventional Ultra High Frequency (UHF) networks operating at sub 6 GHz frequency band. The purpose of this paper is to investigate the performance in terms of coverage and rate, of hybrid cellular networks where base stations (BSs) operating at mmWave and sub 6 GHz bands coexist in suburban environment such as a university campus. The actual building locations within a suburban university campus are modeled as blockages and the analysis is carried out for different densities of UHF and mmWave BSs for different densities of outdoor users. Our analysis also highlight the fact that mmWave cellular networks are predominantly noise-limited due to larger available bandwidth in comparison to the interference limited conventional UHF networks. Extensive simulation results demonstrate the effectiveness of dense deployment of mmWave BSs to achieve better coverage and rate probabilities in comparison to the stand alone UHF network

    Multiobjective Optimization in 5G Hybrid Networks

    Get PDF
    The increasing adoption of the Internet of Things has led to the need for systems with higher spectral and energy efficiency (EE) in order to enable communication. Larger data rate demands had led researchers to look at millimeter wave (mmWave) bands to boost network rates. This paper investigates the downlink performance of a three-tier heterogeneous network that consists of sub-6 GHz macrocells overlaid with small cells operating on both the mmWave and sub-6 GHz bands. A model is developed using tools from stochastic geometry to analyze the coverage, rate, area spectral efficiency, and EE of such a network. Various deployment strategies and their impacts on the considered metrics are studied. Simulation results are used to verify the validity of the proposed model
    corecore